The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications

被引:27
作者
Zhu, Jia-chen [1 ,2 ]
Tang, Pu [1 ,2 ]
Zheng, Bo-Ying [1 ,2 ]
Wu, Qiong [1 ,2 ]
Wei, Shu-jun [3 ]
Chen, Xue-xin [1 ,2 ]
机构
[1] Zhejiang Univ, Inst Insect Sci, State Key Lab Rice Biol, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Inst Insect Sci, Minist Agr, Key Lab Mol Biol Plant Pathogens & Insect Pests, Hangzhou 310058, Zhejiang, Peoples R China
[3] Beijing Acad Agr & Forestry Sci, Inst Plant & Environm Protect, Beijing 100097, Peoples R China
基金
中国国家自然科学基金;
关键词
Mitochondrial genome; Phylogeny; Chalcidoidea; EVOLUTIONARY DYNAMICS; RNA GENES; HYMENOPTERA; INSECTA; ORGANIZATION; SEQUENCE; REARRANGEMENTS; BIOLOGY; ANT; DNA;
D O I
10.1016/j.ijbiomac.2018.06.087
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chalcidoidea is one of the most diverse group in Hymenoptera by possessing striking mitochondrial gene arrangement. By using next generation sequencing method, the first two nearly complete mitochondrial genomes in the family Aphelinidae (Insecta, Hymenopetra, Chalcidoidea) were obtained in this study. Almost all previously sequenced mitochondrial genome of Chalcidoidea species have a large inversion including six genes (atp6-atp8-trnD-trnK-cox2-trnL2-coxl ) as compared with ancestral mitochondrial genome, but these two Encarsia mitochondrial genomes had a large inversion including nine genes (nad3-trnG-atp6-atp8-trnD-trnKcox2-trnL2-coxl ), which was only congruent with the species in the genus Nasonia. Moreover, we found that one shuffling changes (trill) and trnK) happened in the species E. obtusiclava but not in another species E. formosa within the same genus, of which such shuffling within the same genus at this region was only detected in Polisters within Insecta. Phylogenetic analysis displayed that different data matrix (13PCG+ 2 rRNA or 13 PCG) and inference methods (BI or ML) indicate the identical topology with high nodal supports that Aphelinidae formed a sister group with (Trichogrammatidae + Aganoidae) and the monophyly of Pteramalidae. Our results also indicated the validity of assembling and feasibility of next-generation technology to obtain the mitochondrial genomes of parasitic Hymenoptera. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:386 / 396
页数:11
相关论文
共 83 条
  • [61] A Comparative Analysis of Mitochondrial Genomes in Coleoptera (Arthropoda: Insecta) and Genome Descriptions of Six New Beetles
    Sheffield, N. C.
    Song, H.
    Cameron, L.
    Whiting, M. F.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (11) : 2499 - 2509
  • [62] Encarsia (Hymenoptera: Aphelinidae) parasitoids of Bemisia species in Taiwan (Hemiptera: Aleyrodidae)
    Shih, Yuan-Tung
    Ko, Chiun-Cheng
    Polaszek, Andrew
    [J]. JOURNAL OF NATURAL HISTORY, 2008, 42 (47-48) : 2923 - 2941
  • [63] Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA
    Simon, Chris
    Buckley, Thomas R.
    Frati, Francesco
    Stewart, James B.
    Beckenbach, Andrew T.
    [J]. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2006, 37 : 545 - 579
  • [64] Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans
    Song, Sheng-Nan
    Tang, Pu
    Wei, Shu-Jun
    Chen, Xue-Xin
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [65] The mitochondrial genome: structure, transcription, translation and replication
    Taanman, JW
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1999, 1410 (02): : 103 - 123
  • [66] Tamura K, 2013, MOL BIOL EVOL, V30, P2725, DOI [10.1093/molbev/mst197, 10.1093/molbev/msr121]
  • [67] High-throughput monitoring of wild bee diversity and abundance via mitogenomics
    Tang, Min
    Hardman, Chloe J.
    Ji, Yinqiu
    Meng, Guanliang
    Liu, Shanlin
    Tan, Meihua
    Yang, Shenzhou
    Moss, Ellen D.
    Wang, Jiaxin
    Yang, Chenxue
    Bruce, Catharine
    Nevard, Tim
    Potts, Simon G.
    Zhou, Xin
    Yu, Douglas W.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2015, 6 (09): : 1034 - 1043
  • [68] Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha)
    Thao, ML
    Baumann, L
    Baumann, P
    [J]. BMC EVOLUTIONARY BIOLOGY, 2004, 4 (1)
  • [69] Rapid assembly of taxonomically validated mitochondrial genomes from historical insect collections
    Timmermans, Martijn J. T. N.
    Viberg, Carl
    Martin, Geoff
    Hopkins, Kevin
    Vogler, Alfried P.
    [J]. BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2016, 117 (01) : 83 - 95
  • [70] Advances in Insect Phylogeny at the Dawn of the Postgenomic Era
    Trautwein, Michelle D.
    Wiegmann, Brian M.
    Beutel, Rolf
    Kjer, Karl M.
    Yeates, David K.
    [J]. ANNUAL REVIEW OF ENTOMOLOGY, VOL 57, 2012, 57 : 449 - +