共 13 条
On the (Laplacian) spectral radius of bipartite graphs with given number of blocks
被引:0
作者:
Zhai, Mingqing
[1
,2
]
Liu, Ruifang
[1
]
Shu, Jinlong
[1
]
机构:
[1] Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
来源:
关键词:
Bipartite graph;
Block;
Spectral radius;
Laplacian spectral radius;
K-PENDANT VERTICES;
LARGEST EIGENVALUE;
SHARP UPPER;
MATRICES;
DIAMETER;
TREES;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The (Laplacian) spectral radius of a graph is the maximum eigenvalue of its adjacency matrix (Laplacian matrix, respectively). Let G(n, k) be the set of bipartite graphs with n vertices and k blocks. This paper gives a complete characterization for the extremal graph with the maximum spectral radius (Laplacian spectral radius, respectively) in G(n, k).
引用
收藏
页码:311 / 319
页数:9
相关论文