On the (Laplacian) spectral radius of bipartite graphs with given number of blocks

被引:0
作者
Zhai, Mingqing [1 ,2 ]
Liu, Ruifang [1 ]
Shu, Jinlong [1 ]
机构
[1] Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Bipartite graph; Block; Spectral radius; Laplacian spectral radius; K-PENDANT VERTICES; LARGEST EIGENVALUE; SHARP UPPER; MATRICES; DIAMETER; TREES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (Laplacian) spectral radius of a graph is the maximum eigenvalue of its adjacency matrix (Laplacian matrix, respectively). Let G(n, k) be the set of bipartite graphs with n vertices and k blocks. This paper gives a complete characterization for the extremal graph with the maximum spectral radius (Laplacian spectral radius, respectively) in G(n, k).
引用
收藏
页码:311 / 319
页数:9
相关论文
共 13 条
[11]   Maximizing the Laplacian spectral radii of graphs with given diameter [J].
Zhai, Mingqing ;
Shu, Jinlong ;
Lu, Zhonghua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) :1897-1905
[12]   On the spectral radius of bipartite graphs with given diameter [J].
Zhai, Mingqing ;
Liu, Ruifang ;
Shu, Jinlong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) :1165-1170
[13]   The Laplacian spectral radius of some bipartite graphs [J].
Zhang, Xiaoling ;
Zhang, Heping .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1610-1619