共 50 条
scDA: Single cell discriminant analysis for single-cell RNA sequencing data
被引:8
|作者:
Shi, Qianqian
[1
]
Li, Xinxing
[1
]
Peng, Qirui
[1
]
Zhang, Chuanchao
[2
]
Chen, Luonan
[2
,3
,4
]
机构:
[1] Huazhong Agr Univ, Coll Informat, Agr Bioinformat Key Lab Hubei Prov, Wuhan 430070, Peoples R China
[2] Univ Chinese Acad Sci, Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Hlth Sci Zhejiang Prov, Hangzhou 310024, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Mol Cell Sci, Shanghai Inst Biochem & Cell Biol, State Key Lab Cell Biol, Shanghai 200031, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Single-cell RNA-sequencing;
Discriminant analysis;
Discriminant features;
Cell-by-cell representation graph;
Cell annotation;
HETEROGENEITY;
SIGNATURES;
ATLAS;
D O I:
10.1016/j.csbj.2021.05.046
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Single-cell RNA-sequencing (scRNA-seq) techniques provide unprecedented opportunities to investigate phenotypic and molecular heterogeneity in complex biological systems. However, profiling massive amounts of cells brings great computational challenges to accurately and efficiently characterize diverse cell populations. Single cell discriminant analysis (scDA) solves this problem by simultaneously identifying cell groups and discriminant metagenes based on the construction of cell-by-cell representation graph, and then using them to annotate unlabeled cells in data. We demonstrate scDA is effective to determine cell types, revealing the overall variabilities between cells from eleven data sets. scDA also outperforms several state-of-the-art methods when inferring the labels of new samples. In particular, we found scDA less sensitive to drop-out events and capable to label a mass of cells within or across data-sets after learning even from a small set of data. The scDA approach offers a new way to efficiently analyze scRNA-seq profiles of large size or from different batches. scDA was implemented and freely available at https://github.com/ZCCQQWork/scDA. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:3234 / 3244
页数:11
相关论文