scDA: Single cell discriminant analysis for single-cell RNA sequencing data

被引:8
作者
Shi, Qianqian [1 ]
Li, Xinxing [1 ]
Peng, Qirui [1 ]
Zhang, Chuanchao [2 ]
Chen, Luonan [2 ,3 ,4 ]
机构
[1] Huazhong Agr Univ, Coll Informat, Agr Bioinformat Key Lab Hubei Prov, Wuhan 430070, Peoples R China
[2] Univ Chinese Acad Sci, Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Hlth Sci Zhejiang Prov, Hangzhou 310024, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Mol Cell Sci, Shanghai Inst Biochem & Cell Biol, State Key Lab Cell Biol, Shanghai 200031, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2021年 / 19卷
基金
中国国家自然科学基金;
关键词
Single-cell RNA-sequencing; Discriminant analysis; Discriminant features; Cell-by-cell representation graph; Cell annotation; HETEROGENEITY; SIGNATURES; ATLAS;
D O I
10.1016/j.csbj.2021.05.046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) techniques provide unprecedented opportunities to investigate phenotypic and molecular heterogeneity in complex biological systems. However, profiling massive amounts of cells brings great computational challenges to accurately and efficiently characterize diverse cell populations. Single cell discriminant analysis (scDA) solves this problem by simultaneously identifying cell groups and discriminant metagenes based on the construction of cell-by-cell representation graph, and then using them to annotate unlabeled cells in data. We demonstrate scDA is effective to determine cell types, revealing the overall variabilities between cells from eleven data sets. scDA also outperforms several state-of-the-art methods when inferring the labels of new samples. In particular, we found scDA less sensitive to drop-out events and capable to label a mass of cells within or across data-sets after learning even from a small set of data. The scDA approach offers a new way to efficiently analyze scRNA-seq profiles of large size or from different batches. scDA was implemented and freely available at https://github.com/ZCCQQWork/scDA. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:3234 / 3244
页数:11
相关论文
共 42 条
  • [1] A comparison of automatic cell identification methods for single-cell RNA sequencing data
    Abdelaal, Tamim
    Michielsen, Lieke
    Cats, Davy
    Hoogduin, Dylan
    Mei, Hailiang
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [2] Argyriou Andreas, 2007, Multi-Task Feature Learning, P41, DOI DOI 10.7551/MITPRESS/7503.003.0010
  • [3] A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure
    Baron, Maayan
    Veres, Adrian
    Wolock, Samuel L.
    Faust, Aubrey L.
    Gaujoux, Renaud
    Vetere, Amedeo
    Ryu, Jennifer Hyoje
    Wagner, Bridget K.
    Shen-Orr, Shai S.
    Klein, Allon M.
    Melton, Douglas A.
    Yanai, Itai
    [J]. CELL SYSTEMS, 2016, 3 (04) : 346 - +
  • [4] A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data
    Barron, Martin
    Zhang, Siyuan
    Li, Jun
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (03)
  • [5] scID Uses Discriminant Analysis to Identify Transcriptionally Equivalent Cell Types across Single-Cell RNA-Seq Data with Batch Effect
    Boufea, Katerina
    Seth, Sohan
    Batada, Nizar N.
    [J]. ISCIENCE, 2020, 23 (03)
  • [6] Metagenes and molecular pattern discovery using matrix factorization
    Brunet, JP
    Tamayo, P
    Golub, TR
    Mesirov, JP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) : 4164 - 4169
  • [7] Integrating single-cell transcriptomic data across different conditions, technologies, and species
    Butler, Andrew
    Hoffman, Paul
    Smibert, Peter
    Papalexi, Efthymia
    Satija, Rahul
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 411 - +
  • [8] Multilineage communication regulates human liver bud development from pluripotency
    Camp, J. Gray
    Sekine, Keisuke
    Gerber, Tobias
    Loeffler-Wirth, Henry
    Binder, Hans
    Gac, Malgorzata
    Kanton, Sabina
    Kageyama, Jorge
    Damm, Georg
    Seehofer, Daniel
    Belicova, Lenka
    Bickle, Marc
    Barsacchi, Rico
    Okuda, Ryo
    Yoshizawa, Emi
    Kimura, Masaki
    Ayabe, Hiroaki
    Taniguchi, Hideki
    Takebe, Takanori
    Treutlein, Barbara
    [J]. NATURE, 2017, 546 (7659) : 533 - +
  • [9] Robust Subspace Segmentation Via Low-Rank Representation
    Chen, Jinhui
    Yang, Jian
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1432 - 1445
  • [10] DISCRIMINANT-ANALYSIS USING NONMETRIC MULTIDIMENSIONAL-SCALING
    COX, TF
    FERRY, G
    [J]. PATTERN RECOGNITION, 1993, 26 (01) : 145 - 153