Preference Parameters for the Calculation of Thermal Conductivity by Multiparticle Collision Dynamics

被引:3
作者
Wang, Ruijin [1 ]
Zhang, Zhen [1 ]
Li, Long [1 ]
Zhu, Zefei [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Mech Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
multiparticle collision dynamics (MPCD); coarse-grained; nanofluid; thermal conductivity (TC); parameterization investigation; AGGREGATION MORPHOLOGY; FIELD; MODEL;
D O I
10.3390/e23101325
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Calculation of the thermal conductivity of nanofluids by molecular dynamics (MD) is very common. Regrettably, general MD can only be employed to simulate small systems due to the huge computation workload. Instead, the computation workload can be considerably reduced due to the coarse-grained fluid when multiparticle collision dynamics (MPCD) is employed. Hence, such a method can be utilized to simulate a larger system. However, the selection of relevant parameters of MPCD noticeably influences the calculation results. To this end, parameterization investigations for various bin sizes, number densities, time-steps, rotation angles and temperatures are carried out, and the influence of these parameters on the calculation of thermal conductivity are analyzed. Finally, the calculations of thermal conductivity for liquid argon, water and Cu-water nanofluid are performed, and the errors compared to the theoretical values are 3.4%, 1.5% and 1.2%, respectively. This proves that the method proposed in the present work for calculating the thermal conductivity of nanofluids is applicable.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids [J].
Nejatolahi, Mostafa ;
Golneshan, Ali Akbar ;
Kamali, Reza ;
Sabbaghi, Samad .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 144 (04) :1467-1481
[42]   Thermal conductivity of amorphous and crystalline thin films by molecular dynamics simulation [J].
Huang, Zhengxing ;
Tang, Zhenan ;
Yu, Jun ;
Bai, Suyuan .
PHYSICA B-CONDENSED MATTER, 2009, 404 (12-13) :1790-1793
[43]   Molecular dynamics simulations of thermal conductivity between two nanoparticles in contact [J].
Mora-Barzaga, G. ;
Miranda, E. N. ;
Bringa, E. M. .
JOURNAL OF APPLIED PHYSICS, 2020, 127 (22)
[44]   Thermal conductivity of TiO2 nanotube: a molecular dynamics study [J].
Yang, Liang ;
Wang, Cai-Zhuang ;
Lin, Shiwei ;
Chen, Taohai ;
Cao, Yang ;
Zhang, Ping ;
Liu, Xiaoheng .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (05)
[45]   Thermal conductivity and viscosity of nanofluids: A review of recent molecular dynamics studies [J].
Jabbari, Fatemeh ;
Rajabpour, Ali ;
Saedodin, Seifollah .
CHEMICAL ENGINEERING SCIENCE, 2017, 174 :67-81
[46]   Influence of nanoparticle properties on the thermal conductivity of nanofluids by molecular dynamics simulation [J].
Cui, Wenzheng ;
Shen, Zhaojie ;
Yang, Jianguo ;
Wu, Shaohua ;
Bai, Minli .
RSC ADVANCES, 2014, 4 (98) :55580-55589
[47]   Nanoparticles Shape Effect on Thermal Conductivity of Nanofluids: A Molecular Dynamics Study [J].
Roni, Md. Rakibul Hasan ;
Morshed, A. K. M. M. ;
Tikadar, Amitav ;
Paul, Titan C. ;
Khan, Jamil A. .
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 8, 2019,
[48]   Calculation of the cross-plane thermal conductivity of a quantum cascade laser active region [J].
Szymanski, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (08)
[49]   A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC [J].
Yan, Dongfang ;
Wen, Jie ;
Xu, Guoqiang .
APPLIED THERMAL ENGINEERING, 2016, 94 :827-835
[50]   Calculation of Effective Thermal Conductivity for Human Skin Using the Fractal Monte Carlo Method [J].
Rojas-Altamirano, Guillermo ;
Vargas, Rene O. ;
Escandon, Juan P. ;
Mil-Martinez, Ruben ;
Rojas-Montero, Alan .
MICROMACHINES, 2022, 13 (03)