Preference Parameters for the Calculation of Thermal Conductivity by Multiparticle Collision Dynamics

被引:3
作者
Wang, Ruijin [1 ]
Zhang, Zhen [1 ]
Li, Long [1 ]
Zhu, Zefei [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Mech Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
multiparticle collision dynamics (MPCD); coarse-grained; nanofluid; thermal conductivity (TC); parameterization investigation; AGGREGATION MORPHOLOGY; FIELD; MODEL;
D O I
10.3390/e23101325
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Calculation of the thermal conductivity of nanofluids by molecular dynamics (MD) is very common. Regrettably, general MD can only be employed to simulate small systems due to the huge computation workload. Instead, the computation workload can be considerably reduced due to the coarse-grained fluid when multiparticle collision dynamics (MPCD) is employed. Hence, such a method can be utilized to simulate a larger system. However, the selection of relevant parameters of MPCD noticeably influences the calculation results. To this end, parameterization investigations for various bin sizes, number densities, time-steps, rotation angles and temperatures are carried out, and the influence of these parameters on the calculation of thermal conductivity are analyzed. Finally, the calculations of thermal conductivity for liquid argon, water and Cu-water nanofluid are performed, and the errors compared to the theoretical values are 3.4%, 1.5% and 1.2%, respectively. This proves that the method proposed in the present work for calculating the thermal conductivity of nanofluids is applicable.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Experimental and Theoretical Studies of Different Parameters on the Thermal Conductivity of Nanofluids [J].
Qin, Jun ;
Tao, Yuequn ;
Liu, Qiusheng ;
Li, Zilong ;
Zhu, Zhiqiang ;
He, Naifeng .
MICROMACHINES, 2023, 14 (05)
[22]   Hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures: A multiparticle collision dynamics study [J].
Winkler, Alexander ;
Virnau, Peter ;
Binder, Kurt ;
Winkler, Roland G. ;
Gompper, Gerhard .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (05)
[23]   Assessment of Calculation Methods for Thermal Conductivity of Saturated Kaolinite [J].
Lee, Jangguen ;
Kim, Young Seok ;
Kim, Hak Seung ;
Kang, Jae Mo ;
Bae, Gyu Jin .
INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2012, 22 (02) :172-175
[24]   Simulation of cylindrical Poiseuille flow in multiparticle collision dynamics using explicit fluid-wall confining forces [J].
Ayala-Hernandez, A. ;
Hijar, H. .
REVISTA MEXICANA DE FISICA, 2016, 62 (01) :73-82
[25]   Experiment and calculation of the thermal conductivity of nanofluid under electric field [J].
Liu, Jin-Ming ;
Liu, Zhen-Hua ;
Chen, Yan-Jun .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 107 :6-12
[26]   Calculation of thermal conductivity of gypsum plasterboards at ambient and elevated temperature [J].
de Korte, A. C. J. ;
Brouwers, H. J. H. .
FIRE AND MATERIALS, 2010, 34 (02) :55-75
[27]   Investigation of the aggregation morphology of nanoparticle on the thermal conductivity of nanofluid by molecular dynamics simulations [J].
Wang, Ruijin ;
Qian, Sheng ;
Zhang, Zhiqi .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 :1138-1146
[28]   Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings [J].
Robledo-Fava, Roberto ;
Hernandez-Luna, Monica C. ;
Fernandez-de-Cordoba, Pedro ;
Michinel, Humberto ;
Zaragoza, Sonia ;
Castillo-Guzman, A. ;
Selvas-Aguilar, Romeo .
ENERGIES, 2019, 12 (08)
[29]   Improving inherent thermal conductivity of epoxy resins based on contribution components of thermal conductivity: A molecular dynamics study [J].
Liu, Xiangyu ;
Ai, Qing ;
Xu, Jiazhe ;
Shuai, Yong .
EUROPEAN POLYMER JOURNAL, 2023, 198
[30]   Experimental Investigation of Parameters Affecting Nanofluid Effective Thermal Conductivity [J].
Kazemi-Beydokhti, A. ;
Heris, S. Zeinali ;
Moghadam, N. ;
Shariati-Niasar, M. ;
Hamidi, A. A. .
CHEMICAL ENGINEERING COMMUNICATIONS, 2014, 201 (05) :593-611