Preference Parameters for the Calculation of Thermal Conductivity by Multiparticle Collision Dynamics

被引:3
|
作者
Wang, Ruijin [1 ]
Zhang, Zhen [1 ]
Li, Long [1 ]
Zhu, Zefei [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Mech Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
multiparticle collision dynamics (MPCD); coarse-grained; nanofluid; thermal conductivity (TC); parameterization investigation; AGGREGATION MORPHOLOGY; FIELD; MODEL;
D O I
10.3390/e23101325
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Calculation of the thermal conductivity of nanofluids by molecular dynamics (MD) is very common. Regrettably, general MD can only be employed to simulate small systems due to the huge computation workload. Instead, the computation workload can be considerably reduced due to the coarse-grained fluid when multiparticle collision dynamics (MPCD) is employed. Hence, such a method can be utilized to simulate a larger system. However, the selection of relevant parameters of MPCD noticeably influences the calculation results. To this end, parameterization investigations for various bin sizes, number densities, time-steps, rotation angles and temperatures are carried out, and the influence of these parameters on the calculation of thermal conductivity are analyzed. Finally, the calculations of thermal conductivity for liquid argon, water and Cu-water nanofluid are performed, and the errors compared to the theoretical values are 3.4%, 1.5% and 1.2%, respectively. This proves that the method proposed in the present work for calculating the thermal conductivity of nanofluids is applicable.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multiparticle collision dynamics for ferrofluids
    Ilg, Patrick
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (14)
  • [2] Stress tensors of multiparticle collision dynamics fluids
    Winkler, Roland G.
    Huang, Chien-Cheng
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (07)
  • [3] Backtracking of Colloids: A Multiparticle Collision Dynamics Simulation Study
    Belushkin, M.
    Winkler, R. G.
    Foffi, G.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (48) : 14263 - 14268
  • [4] Simulating wet active polymers by multiparticle collision dynamics
    Llahi, Judit Clopes
    Martin-Gomez, Aitor
    Gompper, Gerhard
    Winkler, Roland G.
    PHYSICAL REVIEW E, 2022, 105 (01)
  • [5] Hydrodynamic correlations of viscoelastic fluids by multiparticle collision dynamics simulations
    Toneian, David
    Kahl, Gerhard
    Gompper, Gerhard
    Winkler, Roland G.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (19)
  • [6] Steady flow through a constricted cylinder by multiparticle collision dynamics
    Bedkihal, Salil
    Kumaradas, J. Carl
    Rohlf, Katrin
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2013, 12 (05) : 929 - 939
  • [7] Sediment-Water Interface Flow with the Multiparticle Collision Dynamics
    Matyka, Maciej
    TRANSPORT IN POROUS MEDIA, 2017, 120 (03) : 633 - 641
  • [8] Fluid-solid boundary conditions for multiparticle collision dynamics
    Whitmer, Jonathan K.
    Luijten, Erik
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (10)
  • [9] Flow between two coaxial cylinders simulated by multiparticle collision dynamics
    Ayala-Hernandez, A.
    Hijar, H.
    REVISTA MEXICANA DE FISICA, 2016, 62 (06) : 500 - 509
  • [10] Flow around fishlike shapes studied using multiparticle collision dynamics
    Reid, Daniel A. P.
    Hildenbrandt, H.
    Padding, J. T.
    Hemelrijk, C. K.
    PHYSICAL REVIEW E, 2009, 79 (04):