A split-step particle swarm optimization algorithm in river stage forecasting

被引:102
作者
Chau, K. W. [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Struct Engn, Kowloon, Hong Kong, Peoples R China
关键词
river stage; forecasting; sptit-step; particle swarm; optimization; Levenberg-Marquardt algorithm; artificial neural networks;
D O I
10.1016/j.jhydrol.2007.09.004
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An accurate forecast of river stage is very significant so that there is ample time for the pertinent authority to issue a forewarning of the impending flood and to implement early evacuation measures as required. Since a variety of existing process-based hydrological models involve exogenous input and different assumptions, artificial neural networks have the potential to be a cost-effective solution. In this paper, a split-step particle swarm optimization (PSO) model is developed and applied to train multi-layer perceptrons for forecasting real-time water levels at Fo Tan in Shing Mun River of Hong Kong with different lead times on the basis of the upstream gauging station (Tin Sum) or at Fo Tan. This paradigm is able to combine the advantages of global search capability of PSO algorithm in the first step and local fast convergence of Levenberg-Marquardt algorithm in the second step. The results demonstrate that it is able to attain a higher accuracy in a much shorter time when compared with the benchmarking backward propagation algorithm as well as the standard PSO algorithm. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 22 条