Super-radiance reveals infinite-range dipole interactions through a nanofiber

被引:211
作者
Solano, P. [1 ,2 ]
Barberis-Blostein, P. [1 ,2 ,3 ]
Fatemi, F. K. [4 ]
Orozco, L. A. [1 ,2 ]
Rolston, S. L. [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, NIST, College Pk, MD 20742 USA
[3] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 04510, DF, Mexico
[4] Army Res Lab, Adelphi, MD 20783 USA
基金
美国国家科学基金会;
关键词
QUANTUM SPIN DYNAMICS; ATOM; SUPERRADIANT; PHOTONS; SWITCH;
D O I
10.1038/s41467-017-01994-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atoms interact with each other through the electromagnetic field, creating collective states that can radiate faster or slower than a single atom, i.e., super- and sub-radiance. When the field is confined to one dimension it enables infinite-range atom-atom interactions. Here we present the first report of infinite-range interactions between macroscopically separated atomic dipoles mediated by an optical waveguide. We use cold 87Rb atoms in the vicinity of a single-mode optical nanofiber (ONF) that coherently exchange evanescently coupled photons through the ONF mode. In particular, we observe super-radiance of a few atoms separated by hundreds of resonant wavelengths. The same platform allows us to measure sub- radiance, a rarely observed effect, presenting a unique tool for quantum optics. This result constitutes a proof of principle for collective behavior of macroscopically delocalized atomic states, a crucial element for new proposals in quantum information and many-body physics.
引用
收藏
页数:7
相关论文
共 40 条
[1]  
Araujo M. O., 2017, J MODERN OPT
[2]   Exponential Improvement in Photon Storage Fidelities Using Subradiance and "Selective Radiance" in Atomic Arrays [J].
Asenjo-Garcia, A. ;
Moreno-Cardoner, M. ;
Albrecht, A. ;
Kimble, H. J. ;
Chang, D. E. .
PHYSICAL REVIEW X, 2017, 7 (03)
[3]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[4]   Observation of ultralong-range Rydberg molecules [J].
Bendkowsky, Vera ;
Butscher, Bjoern ;
Nipper, Johannes ;
Shaffer, James P. ;
Loew, Robert ;
Pfau, Tilman .
NATURE, 2009, 458 (7241) :1005-U76
[5]   Cooperative eigenmodes and scattering in one-dimensional atomic arrays [J].
Bettles, Robert J. ;
Gardiner, Simon A. ;
Adams, Charles S. .
PHYSICAL REVIEW A, 2016, 94 (04)
[6]   Quantum spin dynamics and entanglement generation with hundreds of trapped ions [J].
Bohnet, Justin G. ;
Sawyer, Brian C. ;
Britton, Joseph W. ;
Wall, Michael L. ;
Rey, Ana Maria ;
Foss-Feig, Michael ;
Bollinger, John J. .
SCIENCE, 2016, 352 (6291) :1297-1301
[7]   A steady-state superradiant laser with less than one intracavity photon [J].
Bohnet, Justin G. ;
Chen, Zilong ;
Weiner, Joshua M. ;
Meiser, Dominic ;
Holland, Murray J. ;
Thompson, James K. .
NATURE, 2012, 484 (7392) :78-81
[8]   Cavity QED with atomic mirrors [J].
Chang, D. E. ;
Jiang, L. ;
Gorshkov, A. V. ;
Kimble, H. J. .
NEW JOURNAL OF PHYSICS, 2012, 14
[9]   Observation of superradiant and subradiant spontaneous emission of two trapped ions [J].
DeVoe, RG ;
Brewer, RG .
PHYSICAL REVIEW LETTERS, 1996, 76 (12) :2049-2052
[10]   COHERENCE IN SPONTANEOUS RADIATION PROCESSES [J].
DICKE, RH .
PHYSICAL REVIEW, 1954, 93 (01) :99-110