Weyl and Wigner functions in an extended phase-space formalism

被引:35
|
作者
Chountasis, S [1 ]
Vourdas, A [1 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England
来源
PHYSICAL REVIEW A | 1998年 / 58卷 / 03期
关键词
D O I
10.1103/PhysRevA.58.1794
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wigner function W(x,p) is related to the Weyl function (W) over tilde(X,P) through a two-dimensional Fourier transform. Several properties for these functions are proved which lead naturally to an extended phase space x-p-X-P. Uncertainty relations for delta x delta P and for delta p delta X are studied. They reduce to the usual uncertainty relation in the special case of pure states, but are different for mixed states. Thermal density matrices obey these uncertainty relations as equalities.
引用
收藏
页码:1794 / 1798
页数:5
相关论文
共 50 条
  • [21] WIGNER PHASE-SPACE REPRESENTATION OF THERMAL EXCITATIONS
    BERMAN, M
    PHYSICAL REVIEW A, 1990, 42 (04): : 1863 - 1868
  • [22] Experimental reconstruction of Wigner phase-space current
    Chen, Yi-Ru
    Hsieh, Hsien-Yi
    Ning, Jingyu
    Wu, Hsun-Chung
    Li Chen, Hua
    Chuang, You-Lin
    Yang, Popo
    Steuernagel, Ole
    Wu, Chien-Ming
    Lee, Ray-Kuang
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [23] THE WIGNER PHASE-SPACE DESCRIPTION OF COLLISION PROCESSES
    LEE, HW
    SCULLY, MO
    FOUNDATIONS OF PHYSICS, 1983, 13 (01) : 61 - 72
  • [24] Wigner phase-space distribution as a wave function
    Bondar, Denys I.
    Cabrera, Renan
    Zhdanov, Dmitry V.
    Rabitz, Herschel A.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [25] The Weyl-Wigner-Moyal Formalism on a Discrete Phase Space. I. A Wigner Function for a Nonrelativistic Particle with Spin
    Przanowski, Maciej
    Tosiek, Jaromir
    Turrubiates, Francisco J.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2019, 67 (12):
  • [26] Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics
    Bernardini, Alex E.
    Bertolami, Orfeu
    EPL, 2017, 120 (02)
  • [27] QUANTUM PHASE-SPACE AND THE DISCRETE WEYL ALGEBRA
    HILEY, B
    MONK, N
    MODERN PHYSICS LETTERS A, 1993, 8 (38) : 3625 - 3633
  • [28] PHASE-SPACE PATH INTEGRAL FOR THE WEYL PROPAGATOR
    DEALMEIDA, AMO
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1905): : 139 - 153
  • [29] Fourth-order interference and the extended phase-space formalism for finite quantum systems
    Al Hadhrami, H.
    Vourdas, A.
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [30] REMARKS ON PHASE-SPACE FORMALISM AND BEAM TRANSPORT
    DATTOLI, G
    MARI, C
    TORRE, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (10): : 1127 - 1134