Weyl and Wigner functions in an extended phase-space formalism

被引:35
|
作者
Chountasis, S [1 ]
Vourdas, A [1 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England
来源
PHYSICAL REVIEW A | 1998年 / 58卷 / 03期
关键词
D O I
10.1103/PhysRevA.58.1794
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wigner function W(x,p) is related to the Weyl function (W) over tilde(X,P) through a two-dimensional Fourier transform. Several properties for these functions are proved which lead naturally to an extended phase space x-p-X-P. Uncertainty relations for delta x delta P and for delta p delta X are studied. They reduce to the usual uncertainty relation in the special case of pure states, but are different for mixed states. Thermal density matrices obey these uncertainty relations as equalities.
引用
收藏
页码:1794 / 1798
页数:5
相关论文
共 50 条
  • [2] Working in phase-space with Wigner and Weyl
    Ben-Benjamin, Jonathan S.
    Kim, Moochan B.
    Schleich, Wolfgang P.
    Case, William B.
    Cohen, Leon
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8):
  • [3] ONE-DIMENSIONAL POTENTIALS IN THE PHASE-SPACE FORMALISM OF WEYL-WIGNER-MOYAL
    CHETOUANI, L
    HAMMANN, TF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 92 (01): : 106 - 120
  • [4] WEYL RULE AND WIGNER EQUIVALENTS FOR PHASE-SPACE MULTINOMIALS
    HALL, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01): : 29 - 36
  • [5] Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
    Ligabo, Marilena
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
  • [6] ON THE GROUP OF TRANSLATIONS AND INVERSIONS OF PHASE-SPACE AND THE WIGNER FUNCTIONS
    DAHL, JP
    PHYSICA SCRIPTA, 1982, 25 (04): : 499 - 503
  • [8] Extended Weyl calculus and application to the phase-space Schrodinger equation
    de Gosson, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (19): : L325 - L329
  • [9] Discrete phase-space structures and Wigner functions for N qubits
    Munoz, C.
    Klimov, A. B.
    Sanchez-Soto, L.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (06)
  • [10] Discrete Wigner functions and the phase-space representation of quantum teleportation
    Paz, JP
    PHYSICAL REVIEW A, 2002, 65 (06): : 8