Study of thermal runaway and the combustion behavior of lithium-ion batteries overcharged with high current rates

被引:34
作者
Liu, Zhen [1 ,2 ]
Guo, Xinrong [1 ,2 ]
Meng, Na [1 ,2 ]
Yu, Zhanglong [3 ]
Yang, He [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Safety & Environm Engn, 579 Qianwangang Rd, Huangdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control, Shandong Prov & Minist Sci & Technol, Qingdao 266590, Peoples R China
[3] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery safety; Blast; Thermal runaway; Fire characteristics; INTERNAL SHORT-CIRCUIT; FAILURE-MECHANISM; FIRE; EXPLOSION; STABILITY; CELLS;
D O I
10.1016/j.tca.2022.179276
中图分类号
O414.1 [热力学];
学科分类号
摘要
Overcharged lithium-ion batteries can experience thermal runaway that can cause spontaneous combustion or an explosion. By measuring the heat release rate, surface temperature, flame temperature, positive and negative electrode temperature and mass loss of 18650 NCM lithium-ion battery, the combustion and explosion characteristics of lithium-ion battery under different current rates were analyzed. The results show that the 18650 lithium-ion battery undergoes two thermal runaway behaviors when overcharge at a high current rate. The first thermal runaway leads to a continuous explosion reaction, while the second thermal runaway has a combustion and explosion reaction that is more violent than the first thermal runaway. As the current rate increases from 1 C to 3 C, the time for the first thermal runaway to occur decreases from 1554 to 360 s, the time for the second thermal runaway to occur decreases from 2515 to 522 s, and the explosive response becomes more violent.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model
    Chen, Jie
    Ren, Dongsheng
    Hsu, Hungjen
    Wang, Li
    He, Xiangming
    Zhang, Caiping
    Feng, Xuning
    Ouyang, Minggao
    APPLIED ENERGY, 2021, 295
  • [42] A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium-Ion Batteries in a Sealed Chamber during Thermal Runaway
    Li, Cheng
    Wang, Hewu
    Shi, Chao
    Wang, Yan
    Li, Yalun
    Ouyang, Minggao
    ENERGIES, 2023, 16 (23)
  • [43] Thermal runaway behavior during overcharge for large-format Lithium-ion batteries with different packaging patterns
    Huang, Lvwei
    Zhang, Zhaosheng
    Wang, Zhenpo
    Zhang, Lei
    Zhu, Xiaoqing
    Dorrell, David D.
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [44] A comprehensive study on the impact of heating position on thermal runaway of prismatic lithium-ion batteries
    Zhou, Zhizuan
    Ju, Xiaoyu
    Zhou, Xiaodong
    Yang, Lizhong
    Cao, Bei
    JOURNAL OF POWER SOURCES, 2022, 520
  • [45] A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries
    Shahid, Seham
    Agelin-Chaab, Martin
    ENERGY CONVERSION AND MANAGEMENT-X, 2022, 16
  • [46] Staged thermal runaway behaviours of three typical lithium-ion batteries for hazard prevention
    Xiao, Yang
    Zhao, Jia-Rong
    Yin, Lan
    Li, Bei
    Tian, Yuan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (18) : 10321 - 10333
  • [47] Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers
    Liu, Fen
    Wang, Jianfeng
    Yang, Na
    Wang, Fuqiang
    Chen, Yaping
    Lu, Dongchen
    Liu, Hui
    Du, Qian
    Ren, Xutong
    Shi, Mengyu
    ENERGY, 2022, 257
  • [48] Chemical Thermal Runaway Modeling of Lithium-Ion Batteries for Prediction of Heat and Gas Generation
    Weber, Niklas
    Schuhmann, Sebastian
    Tuebke, Jens
    Nirschl, Hermann
    ENERGY TECHNOLOGY, 2023, 11 (10)
  • [49] Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review
    Li, Weifeng
    Xue, Yao
    Feng, Xinbo
    Rao, Shun
    Zhang, Tianyao
    Gao, Zhenhai
    Guo, Yueming
    Zhou, Haoyu
    Zhao, Haoyuan
    Song, Zelai
    Shi, Jiawei
    Wang, Hewu
    Wang, Deping
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [50] Effects of environmental temperature on the thermal runaway of lithium-ion batteries during charging process
    Meng, Di
    Wang, Xuehui
    Chen, Mingyi
    Wang, Jian
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2023, 83