Study of thermal runaway and the combustion behavior of lithium-ion batteries overcharged with high current rates

被引:34
作者
Liu, Zhen [1 ,2 ]
Guo, Xinrong [1 ,2 ]
Meng, Na [1 ,2 ]
Yu, Zhanglong [3 ]
Yang, He [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Safety & Environm Engn, 579 Qianwangang Rd, Huangdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control, Shandong Prov & Minist Sci & Technol, Qingdao 266590, Peoples R China
[3] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery safety; Blast; Thermal runaway; Fire characteristics; INTERNAL SHORT-CIRCUIT; FAILURE-MECHANISM; FIRE; EXPLOSION; STABILITY; CELLS;
D O I
10.1016/j.tca.2022.179276
中图分类号
O414.1 [热力学];
学科分类号
摘要
Overcharged lithium-ion batteries can experience thermal runaway that can cause spontaneous combustion or an explosion. By measuring the heat release rate, surface temperature, flame temperature, positive and negative electrode temperature and mass loss of 18650 NCM lithium-ion battery, the combustion and explosion characteristics of lithium-ion battery under different current rates were analyzed. The results show that the 18650 lithium-ion battery undergoes two thermal runaway behaviors when overcharge at a high current rate. The first thermal runaway leads to a continuous explosion reaction, while the second thermal runaway has a combustion and explosion reaction that is more violent than the first thermal runaway. As the current rate increases from 1 C to 3 C, the time for the first thermal runaway to occur decreases from 1554 to 360 s, the time for the second thermal runaway to occur decreases from 2515 to 522 s, and the explosive response becomes more violent.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Study on Thermal Safety of the Overcharged Lithium-Ion Battery
    Ji, Changwei
    Zhang, Shouqin
    Wang, Bing
    Sun, Jiejie
    Zhang, Zhizu
    Liu, Yangyi
    FIRE TECHNOLOGY, 2023, 59 (03) : 1089 - 1114
  • [32] Experimental Study on Thermal Runaway Behavior of Lithium-Ion Battery and Analysis of Combustible Limit of Gas Production
    Yang, Xinwei
    Wang, Hewu
    Li, Minghai
    Li, Yalun
    Li, Cheng
    Zhang, Yajun
    Chen, Siqi
    Shen, Hengjie
    Qian, Feng
    Feng, Xuning
    Ouyang, Minggao
    BATTERIES-BASEL, 2022, 8 (11):
  • [33] Study on Thermal Safety of the Overcharged Lithium-Ion Battery
    Changwei Ji
    Shouqin Zhang
    Bing Wang
    Jiejie Sun
    Zhizu Zhang
    Yangyi Liu
    Fire Technology, 2023, 59 : 1089 - 1114
  • [34] Research advances on thermal runaway mechanism of lithium-ion batteries and safety improvement
    He, Dan
    Wang, Jialin
    Peng, Yanjun
    Li, Baofeng
    Feng, Chang
    Shen, Lin
    Ma, Shouxiao
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 41
  • [35] Comparison on Thermal Runaway and Critical Characteristics of Cylindrical Lithium-Ion Batteries: A Review
    Li, Wei
    Wang, Jiasheng
    Sun, Chunfeng
    Fan, Xiaoping
    Gong, Lingzhu
    Huang, Jiale
    Wu, Jian-heng
    Yu, Gending
    Chen, Rongguo
    Li, Jingling
    Duh, Yih-Shing
    ACS CHEMICAL HEALTH & SAFETY, 2025, : 133 - 156
  • [36] Impedance Diagnostic for Overcharged Lithium-Ion Batteries
    Love, Corey T.
    Swider-Lyons, Karen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (04) : A53 - A56
  • [37] A model for the prediction of thermal runaway in lithium-ion batteries
    Azuaje-Berbeci, Bernardo J.
    Ertan, H. Bulent
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [38] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [39] A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries
    Ren, Dongsheng
    Hsu, Hungjen
    Li, Ruihe
    Feng, Xuning
    Guo, Dongxu
    Han, Xuebing
    Lu, Languang
    He, Xiangming
    Gao, Shang
    Hou, Junxian
    Li, Yan
    Wang, Yongling
    Ouyang, Minggao
    ETRANSPORTATION, 2019, 2
  • [40] A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries
    Feng, Xuning
    He, Xiangming
    Ouyang, Minggao
    Wang, Li
    Lu, Languang
    Ren, Dongsheng
    Santhanagopalan, Shriram
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (16) : A3748 - A3765