Study of thermal runaway and the combustion behavior of lithium-ion batteries overcharged with high current rates

被引:34
作者
Liu, Zhen [1 ,2 ]
Guo, Xinrong [1 ,2 ]
Meng, Na [1 ,2 ]
Yu, Zhanglong [3 ]
Yang, He [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Safety & Environm Engn, 579 Qianwangang Rd, Huangdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control, Shandong Prov & Minist Sci & Technol, Qingdao 266590, Peoples R China
[3] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery safety; Blast; Thermal runaway; Fire characteristics; INTERNAL SHORT-CIRCUIT; FAILURE-MECHANISM; FIRE; EXPLOSION; STABILITY; CELLS;
D O I
10.1016/j.tca.2022.179276
中图分类号
O414.1 [热力学];
学科分类号
摘要
Overcharged lithium-ion batteries can experience thermal runaway that can cause spontaneous combustion or an explosion. By measuring the heat release rate, surface temperature, flame temperature, positive and negative electrode temperature and mass loss of 18650 NCM lithium-ion battery, the combustion and explosion characteristics of lithium-ion battery under different current rates were analyzed. The results show that the 18650 lithium-ion battery undergoes two thermal runaway behaviors when overcharge at a high current rate. The first thermal runaway leads to a continuous explosion reaction, while the second thermal runaway has a combustion and explosion reaction that is more violent than the first thermal runaway. As the current rate increases from 1 C to 3 C, the time for the first thermal runaway to occur decreases from 1554 to 360 s, the time for the second thermal runaway to occur decreases from 2515 to 522 s, and the explosive response becomes more violent.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries
    Lee, Minseo
    You, Ji-sun
    Kang, Kyeong-sin
    Lee, Jaesung
    Bong, Sungyool
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2024, 27 (02): : 55 - 72
  • [2] Jet behavior of prismatic lithium-ion batteries during thermal runaway
    Zou, Kaiyu
    Chen, Xiao
    Ding, Zhiwei
    Gu, Jia
    Lu, Shouxiang
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [3] Understanding the combustion characteristics and establishing a safety evaluation technique based on the overcharged thermal runaway of lithium-ion batteries
    Bi, Shansong
    Yu, Zhanglong
    Fang, Sheng
    Shen, Xueling
    Cui, Yi
    Yun, Fengling
    Shi, Dong
    Gao, Min
    Zhang, Hang
    Tang, Ling
    Zhang, Xin
    Fang, Yanyan
    Zhang, Xiangjun
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [4] Numerical analysis of thermal runaway process of lithium-ion batteries considering combustion
    Kim, Ryang Hoon
    Lee, Do Hyun
    Kim, Young Kyo
    Chu, Chan Ho
    Lee, Yong Gyun
    Kim, Dong Kyu
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [5] Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway
    Mao, Ning
    Zhang, Teng
    Wang, Zhirong
    Gadkari, Siddharth
    Wang, Junling
    He, Tengfei
    Gao, Tianfeng
    Cai, Qiong
    ENERGY, 2023, 263
  • [6] Thermal runaway process in lithium-ion batteries: A review
    Dai, Yixin
    Panahi, Aidin
    NEXT ENERGY, 2025, 6
  • [7] A Simplified Mathematical Model for Heating-Induced Thermal Runaway of Lithium-Ion Batteries
    Chen, Haodong
    Buston, Jonathan E. H.
    Gill, Jason
    Howard, Daniel
    Williams, Rhiannon C. E.
    Read, Elliott
    Abaza, Ahmed
    Cooper, Brian
    Wen, Jennifer X.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)
  • [8] Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test
    Zhao, Chunpeng
    Wang, Tinghua
    Huang, Zheng
    Wu, Jingyun
    Zhou, Hongwei
    Ma, Mina
    Xu, Jiajia
    Wang, Zhaoyu
    Li, Huang
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2021, 38
  • [9] Experimental and modeling investigation on the gas generation dynamics of lithium-ion batteries during thermal runaway
    Mao, Binbin
    Fear, Conner
    Chen, Haodong
    Zhou, Hanwei
    Zhao, Chunpeng
    Mukherjee, Partha P.
    Sun, Jinhua
    Wang, Qingsong
    ETRANSPORTATION, 2023, 15
  • [10] Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating
    Bai, Jinlong
    Wang, Zhirong
    Gao, Tianfeng
    Bai, Wei
    Wang, Junling
    JOURNAL OF POWER SOURCES, 2021, 507