Coupled simulation of kinetic pedestal growth and MHD ELM crash

被引:19
作者
Park, G. [1 ]
Cummings, J. [2 ]
Chang, C. S. [1 ]
Podhorszki, N. [3 ]
Klasky, S. [10 ]
Ku, S. [1 ]
Pankin, A. [4 ]
Samtaney, R. [5 ]
Shoshani, A. [6 ]
Snyder, P. [7 ]
Strauss, H. [1 ]
Sugiyama, L. [8 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10011 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ Calif Davis, Davis, CA 95616 USA
[4] Lehigh Univ, Bethlehem, PA 18015 USA
[5] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[6] LBNL, Berkeley, CA 94720 USA
[7] Gen Atom Co, San Diego, CA 92138 USA
[8] MIT, Cambridge, MA 02139 USA
[9] SciDAC Prototype FSP Ctr Plasma Edge Simulat, Oak Ridge, TN 14759 USA
[10] ORNL, Oak Ridge, TN 14759 USA
来源
SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING | 2007年 / 78卷
关键词
D O I
10.1088/1742-6596/78/1/012087
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.
引用
收藏
页数:6
相关论文
共 6 条
[1]   ROLE OF EDGE ELECTRIC-FIELD AND POLOIDAL ROTATION IN THE L-H TRANSITION [J].
GROEBNER, RJ ;
BURRELL, KH ;
SERAYDARIAN, RP .
PHYSICAL REVIEW LETTERS, 1990, 64 (25) :3015-3018
[2]   Property of an X-point generated velocity-space hole in a diverted tokamak plasma edge [J].
Ku, S ;
Baek, H ;
Chang, CS .
PHYSICS OF PLASMAS, 2004, 11 (12) :5626-5633
[3]   Scientific workflow management and the Kepler system [J].
Ludascher, Bertram ;
Altintas, Ilkay ;
Berkley, Chad ;
Higgins, Dan ;
Jaeger, Efrat ;
Jones, Matthew ;
Lee, Edward A. ;
Tao, Jing ;
Zhao, Yang .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2006, 18 (10) :1039-1065
[4]   Plasma simulation studies using multilevel physics models [J].
Park, W ;
Belova, EV ;
Fu, GY ;
Tang, XZ ;
Strauss, HR ;
Sugiyama, LE .
PHYSICS OF PLASMAS, 1999, 6 (05) :1796-1803
[5]   Edge localized modes and the pedestal: A model based on coupled peeling-ballooning modes [J].
Snyder, PB ;
Wilson, HR ;
Ferron, JR ;
Lao, LL ;
Leonard, AW ;
Osborne, TH ;
Turnbull, AD ;
Mossessian, D ;
Murakami, M ;
Xu, XQ .
PHYSICS OF PLASMAS, 2002, 9 (05) :2037-2043
[6]   Numerical studies of edge localized instabilities in tokamaks [J].
Wilson, HR ;
Snyder, PB ;
Huysmans, GTA ;
Miller, RL .
PHYSICS OF PLASMAS, 2002, 9 (04) :1277-1286