ANOMALY DETECTION IN SURVEILLANCE VIDEO USING MOTION DIRECTION STATISTICS

被引:24
作者
Liu, Chang [1 ]
Wang, Guijin [1 ]
Ning, Wenxin [1 ]
Lin, Xinggang [1 ]
Li, Liang [2 ]
Liu, Zhou [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Sony China Res Lab, Beijing 100190, Peoples R China
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
Visual surveillance; Anomaly detection; Motion vector; One-class SVM; PCA;
D O I
10.1109/ICIP.2010.5651958
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel approach for detecting anomaly in visual surveillance system is proposed in this paper. It is composed of three parts:(a) a dense motion field and motion statistics method, (b) one-class SVM for one-class classification, (c) motion directional PCA for feature dimensionality reduction. Experiments demonstrate the effectiveness of proposed algorithm in detecting abnormal events in surveillance video, while keeping a low false alarm rate. Moreover, it works well in complicated situation where the common tracking or detection module won't work.
引用
收藏
页码:717 / 720
页数:4
相关论文
共 13 条
  • [1] [Anonymous], 2009, ICCV
  • [2] [Anonymous], 2007, P IEEE C COMPUTER VI
  • [3] [Anonymous], P INT C CONS EL ICCE
  • [4] [Anonymous], CVPR
  • [5] CUPILLARD F, 2004, P IEEE INT C NETW SE, V1, P186
  • [6] Ding T., 2008, P IEEE C COMPUTER VI, P1
  • [7] Ihaddadene N, 2008, INT C PATT RECOG, P217
  • [8] Jain A K., 1989, Fundamentals of digital image processing
  • [9] Jiang F, 2008, INT CONF ACOUST SPEE, P2129
  • [10] Kratz L, 2009, PROC CVPR IEEE, P1446, DOI 10.1109/CVPRW.2009.5206771