Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries

被引:26
作者
Hu, Lei [1 ,2 ]
Li, Lin [1 ]
Zhang, Yuyang [1 ]
Tan, Xiaohong [4 ]
Yang, Hao [3 ]
Lin, Xiaoming [4 ]
Tong, Yexiang [2 ]
机构
[1] Anhui Polytech Univ, Sch Chem & Environm Engn, Anhui Lab Funct Coordinated Complexes Mat Chem &, Wuhu 241000, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, Key Lab Low Carbon Chem & Energy Conservat Guangd, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
[3] Guangxi Univ, Sch Chem & Chem Engn, Guangxi Key Lab Electrochem Energy Mat, Nanning 530004, Peoples R China
[4] South China Normal Univ, Sch Chem, Minist Educ, Key Lab Theoret Chem Environm, Guangzhou 510006, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2022年 / 127卷
基金
中国国家自然科学基金;
关键词
MOF-derived material; Cobalt telluride; Cobalt vacancy; Diffusion kinetics; Lithium storage; ANODE; NANOSHEETS; PERFORMANCE; COMPOSITES; CHEMISTRY; GRAPHENE; FILM;
D O I
10.1016/j.jmst.2022.04.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Designing novel electrode materials with unique structures is of great significance for improving the performance of lithium ion batteries (LIBs). Herein, copper-doped Co1-xTe@nitrogen-doped carbon hollow nanoboxes (Cu-Co1-xTe@NC HNBs) have been fabricated by chemical etching of CuCo-ZIF nanoboxes, followed by a successive high-temperature tellurization process. The as-synthesized Cu-Co1-xTe@NC HNBs composite demonstrated faster ionic and electronic diffusion kinetics than the pristine CoTe@NC HNBs electrode. The existence of Co-vacancy promotes the reduction of Gibbs free energy change (Delta G(H center dot)) and effectively improves the Li(+)diffusion coefficient. XPS and theoretical calculations show that performance improvement is ascribed to the electronic interactions between Cu-Co1-xTe and nitrogen-doped carbon (NC) that trigger the shift of the p-band towards facilitation of interfacial charge transfer, which in turn helps boost up the lithium storage property. Besides, the proposed Cu-doping-induced Co-vacancy strategy can also be extended to other conversion-type cobalt-based material (CoSe2) in addition to asobtained Cu-Co1-xSe2@NC HNBs anodes for long-life and high-capacity LIBs. More importantly, the fabricated LiCoO2//Cu-Co1-xTe@NC HNBs full cell exhibits a high energy density of 403 Wh kg(-1) and a power density of 6000 W kg(-1). We show that the energy/power density reported herein is higher than that of previously studied cobalt-based anodes, indicating the potential application of Cu-Co1-xTe@NC HNBs as a superior electrode material for LIBs. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 43 条
[1]   Extremely pseudocapacitive interface engineered CoO@3D-NRGO hybrid anodes for high energy/ power density and ultralong life lithium-ion batteries [J].
Avvaru, Venkata Sai ;
Jimenez Fernandez, Ivan ;
Feng, Wenliang ;
Hinder, Steven J. ;
Castillo Rodriguez, Miguel ;
Etacheri, Vinodkumar .
CARBON, 2021, 171 :869-881
[2]   Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes [J].
Balogun, Muhammad-Sadeeq ;
Yang, Hao ;
Luo, Yang ;
Qiu, Weitao ;
Huang, Yongchao ;
Liu, Zhao-Qing ;
Tong, Yexiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) :1859-1869
[3]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[4]   MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries [J].
Chen, Chi ;
Xie, Xiuqiang ;
Anasori, Babak ;
Sarycheva, Asya ;
Makaryan, Taron ;
Zhao, Mengqiang ;
Urbankowski, Patrick ;
Miao, Ling ;
Jiang, Jianjun ;
Gogotsi, Yury .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (07) :1846-1850
[5]   Co-CoO/MnO Heterostructured Nanocrystals Anchored on N/P-Doped 3D Porous Graphene for High-Performance Pseudocapacitive Lithium Storage [J].
Chen, Junning ;
Zhou, Haohao ;
Chen, Huanhui ;
An, Bohan ;
Deng, Libo ;
Li, Yongliang ;
Sun, Lingna ;
Ren, Xiangzhong ;
Zhang, Peixin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) :A3820-A3829
[6]   Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage [J].
Chu, Yanting ;
Guo, Lingyu ;
Xi, Baojuan ;
Feng, Zhenyu ;
Wu, Fangfang ;
Lin, Yue ;
Liu, Jincheng ;
Sun, Di ;
Feng, Jinkui ;
Qian, Yitai ;
Xiong, Shenglin .
ADVANCED MATERIALS, 2018, 30 (06)
[7]   CoTe nanorods/rGO composites as a potential anode material for sodium-ion storage [J].
Ding, Yang ;
Wang, Wanwan ;
Bi, Mengfan ;
Guo, Jingyi ;
Fang, Zhen .
ELECTROCHIMICA ACTA, 2019, 313 :331-340
[8]   Different solid electrolyte interface and anode performance of CoCO3 microspheres due to graphene modification and LiCoO2∥CoCO3@rGO full cell study [J].
Ding, Zhaojun ;
Qin, Xianying ;
You, Conghui ;
Wu, Mengyao ;
He, Yanbing ;
Kang, Feiyu ;
Li, Baohua .
ELECTROCHIMICA ACTA, 2018, 270 :192-204
[9]   Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property [J].
Ge, Peng ;
Zhang, Chenyang ;
Hou, Hongshuai ;
Wu, Buke ;
Zhou, Liang ;
Li, Sijie ;
Wu, Tianjing ;
Hu, Jiugang ;
Mai, Liqiang ;
Ji, Xiaobo .
NANO ENERGY, 2018, 48 :617-629
[10]   Hierarchical Microcables Constructed by CoP@C⊂Carbon Framework Intertwined with Carbon Nanotubes for Efficient Lithium Storage [J].
Guo, Kangkang ;
Xi, Baojuan ;
Wei, Ruchao ;
Li, Haibo ;
Feng, Jinkui ;
Xiong, Shenglin .
ADVANCED ENERGY MATERIALS, 2020, 10 (12)