Preparation of Low Surface Area Si-Alloy Anodes for Li-Ion Cells by Ball Milling

被引:7
作者
Cao, Simeng [1 ]
Tahmasebi, Mohammad H. [1 ]
Gracious, Shayne [1 ]
Bennett, J. Craig [2 ]
Obrovac, M. N. [1 ,3 ]
机构
[1] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[2] Acadia Univ, Dept Phys, Wolfville, NS B4P 2R6, Canada
[3] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
SOLID-ELECTROLYTE INTERPHASE; COMBINATORIAL INVESTIGATIONS; FLUOROETHYLENE CARBONATE; NI; CAPACITY; FE;
D O I
10.1149/1945-7111/ac797e
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A new and simple 2-step milling technique is utilized to produce Si-Ti-N alloys with significantly reduced surface area compared to conventional ball milling, while still attaining a full amorphous active Si phase. Surface area reductions of up to 100% were obtained by this method. Surprisingly, this did not result in significant differences in cycling stability compared to conventionally ball milled high surface area alloy materials. This is likely because cycling caused severe fracturing of the alloy surfaces, resulting in a high surface area, regardless of the initial surface area of the alloy. This suggests that, unlike other anode materials such as graphite, reducing the initial surface area of Si alloys does not translate into reduced electrolyte reactivity.
引用
收藏
页数:9
相关论文
共 21 条
[11]   In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres [J].
McDowell, Matthew T. ;
Lee, Seok Woo ;
Harris, Justin T. ;
Korgel, Brian A. ;
Wang, Chongmin ;
Nix, William D. ;
Cui, Yi .
NANO LETTERS, 2013, 13 (02) :758-764
[12]   Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes [J].
Nakai, Hideki ;
Kubota, Tadahiko ;
Kita, Akinori ;
Kawashima, Atsumichi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (07) :A798-A801
[13]   Alloy design for lithium-ion battery anodes [J].
Obrovac, M. N. ;
Christensen, Leif ;
Le, Dinh Ba ;
Dahnb, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (09) :A849-A855
[14]   Alloy Negative Electrodes for Li-Ion Batteries [J].
Obrovac, M. N. ;
Chevrier, V. L. .
CHEMICAL REVIEWS, 2014, 114 (23) :11444-11502
[15]   Structural changes in silicon anodes during lithium insertion/extraction [J].
Obrovac, MN ;
Christensen, L .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (05) :A93-A96
[16]   The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes [J].
Schroder, Kjell ;
Avarado, Judith ;
Yersak, Thomas A. ;
Li, Juchuan ;
Dudney, Nancy ;
Webb, Lauren J. ;
Meng, Ying Shirley ;
Stevenson, Keith J. .
CHEMISTRY OF MATERIALS, 2015, 27 (16) :5531-5542
[17]   Mechanical alloying and milling [J].
Suryanarayana, C .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (1-2) :1-184
[18]   Si-TiN alloy Li-ion battery negative electrode materials made by N2 gas milling [J].
Wang, Y. ;
Cao, Simeng ;
Liu, Hui ;
Zhu, Min ;
Obrovac, M. N. .
MRS COMMUNICATIONS, 2018, 8 (03) :1352-1357
[19]   Lithium Insertion in Nanostructured Si1-xTix Alloys [J].
Wang, Yukun ;
Cao, Simeng ;
Kalinina, Mariya ;
Zheng, Lituo ;
Li, Linjun ;
Zhu, Min ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (13) :A3006-A3010
[20]   Designing nanostructured Si anodes for high energy lithium ion batteries [J].
Wu, Hui ;
Cui, Yi .
NANO TODAY, 2012, 7 (05) :414-429