Semiconductor crystal islands for three-dimensional integration

被引:4
作者
Crnogorac, F. [1 ]
Wong, S. [1 ]
Pease, R. F. W. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2010年 / 28卷 / 06期
基金
美国国家科学基金会;
关键词
SILICON-ON-INSULATOR; TEMPERATURE WAFER; PERFORMANCE; FABRICATION; DESIGN; CHIP; CIRCUITS; QUALITY; SI;
D O I
10.1116/1.3511473
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The critical operation needed to achieve monolithic three-dimensional integrated circuits is obtaining single-crystal, device-quality semiconductor material for upper layer active circuits without exceeding the thermal budget of underlying devices. Previous attempts at using pulsed laser crystallization of amorphous films for upper layer devices failed to provide large enough single crystals at a low enough temperature. Here, the authors demonstrate a more direct approach to realizing high-quality, single-crystal Si (100) and Ge (100) islands (3-3000 mu m across) on amorphous SiO2 substrates. The technique is a form of hydrophilic fusion bonding featuring low temperatures (<= 400 degrees C), chemical mechanical polishing, and chemical surface activation (using NH4OH). The bonds are strong enough (>1 J/m(2)) to withstand SmartCut (R) removal of the donor wafer. By bonding arrays of islands rather than one large contiguous layer, the authors effectively avoided the formation of thermally induced voids at the bonding interface, and so dramatically improved yield. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3511473]
引用
收藏
页码:C6P53 / C6P58
页数:6
相关论文
共 30 条
[1]  
Auberton-Herve A.J., 2002, Silicon Wafer Bonding Technology for VLSI and MEMS Applications
[2]   3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration [J].
Banerjee, K ;
Souri, SJ ;
Kapur, P ;
Saraswat, KC .
PROCEEDINGS OF THE IEEE, 2001, 89 (05) :602-633
[3]   SILICON-ON-INSULATOR MATERIAL TECHNOLOGY [J].
BRUEL, M .
ELECTRONICS LETTERS, 1995, 31 (14) :1201-1202
[4]   Ammonium hydroxide effect on low-temperature wafer bonding energy enhancement [J].
Chao, YL ;
Tong, QY ;
Lee, TH ;
Reiche, M ;
Scholz, R ;
Woo, JCS ;
Gösele, U .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (03) :G74-G77
[5]   Process development and bonding quality investigations of silicon layer stacking based on copper wafer bonding [J].
Chen, KN ;
Chang, SM ;
Fan, A ;
Tan, CS ;
Shen, LC ;
Reif, R .
APPLIED PHYSICS LETTERS, 2005, 87 (03)
[6]   Beat the competition - A knowledge-based design process addressing the antenna effect and cell placement [J].
Chen, PH .
IEEE CIRCUITS & DEVICES, 2004, 20 (03) :18-27
[7]   Nano-graphoepitaxy of semiconductors for 3D integration [J].
Crnogorac, F. ;
Witte, D. J. ;
Xia, Q. ;
Rajendran, B. ;
Pickard, D. S. ;
Liu, Z. ;
Mehta, A. ;
Sharma, S. ;
Yasseri, A. ;
Kamins, T. I. ;
Chou, S. Y. ;
Pease, R. F. W. .
MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) :891-894
[8]  
Crnogorac F., 2009, IEEE INT 3D SY UNPUB
[9]   CHEMICAL FREE ROOM-TEMPERATURE WAFER TO WAFER DIRECT BONDING [J].
FARRENS, SN ;
DEKKER, JR ;
SMITH, JK ;
ROBERDS, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (11) :3949-3955
[10]   Wafer direct bonding with ambient pressure plasma activation [J].
Gabriel, M ;
Johnson, B ;
Suss, R ;
Reiche, M ;
Eichler, M .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2006, 12 (05) :397-400