A Lunar Robot Obstacle Avoidance Planning Method Using Deep Reinforcement Learning for Data Fusion

被引:0
作者
Hu, Ruijun [1 ]
Wang, Zhaokui [2 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha, Peoples R China
[2] Tsinghua Univ, Sch Aerosp Engn, Beijing, Peoples R China
来源
2019 CHINESE AUTOMATION CONGRESS (CAC2019) | 2019年
关键词
lunar robot; deep reinforcement learning; obstacle avoidance planning; data fusion;
D O I
10.1109/cac48633.2019.8997266
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In future exploration and base construction on the moon, obstacle avoidance planning of lunar robots in an uncertain environment is critical for their autonomous movements and operations, with no precise location information of obstacles. In the present work, an obstacle avoidance planning method using deep reinforcement learning with a double-channel Q network is proposed, by which local surveillance video images and navigating data are merged for action value estimation. Through simulation, our method is turned out to achieve motion planning effectively from raw sensing data, and learn faster than the methods using single type of data.
引用
收藏
页码:5365 / 5370
页数:6
相关论文
共 22 条
[1]  
Chen Z, 2018, 2018 INT C MECH EL C
[2]  
Demeester E., 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, P2357, DOI 10.1109/IROS.2005.1545383
[3]   An Introduction to Deep Reinforcement Learning [J].
Francois-Lavet, Vincent ;
Henderson, Peter ;
Islam, Riashat ;
Bellemare, Marc G. ;
Pineau, Joelle .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2018, 11 (3-4) :219-354
[4]   HOW TO BUILD A MOON BASE Researchers are ramping up plans for livimg on the Moon [J].
Gibney, Elizabeth .
NATURE, 2018, 562 (7728) :474-+
[6]  
LaValle S.M., 1998, IEEE ICRA 2000
[7]  
Lillicrap TP, 2015, ARXIV150902971
[8]   ALGORITHM FOR PLANNING COLLISION-FREE PATHS AMONG POLYHEDRAL OBSTACLES [J].
LOZANOPEREZ, T ;
WESLEY, MA .
COMMUNICATIONS OF THE ACM, 1979, 22 (10) :560-570
[9]  
Mnih V, 2016, PR MACH LEARN RES, V48
[10]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533