NONSYMMETRIC MACDONALD POLYNOMIALS VIA INTEGRABLE VERTEX MODELS

被引:6
作者
Borodin, Alexei [1 ,2 ]
Wheeler, Michael [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02142 USA
[2] Inst Informat Transmiss Problems, Moscow, Russia
[3] Univ Melbourne, Sch Math & Stat, Parkville, Vic, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
INVERSE SCATTERING METHOD; AFFINE HECKE ALGEBRAS; COMBINATORIAL FORMULA; 6-VERTEX MODEL; QUANTUM; REPRESENTATIONS; MATRIX;
D O I
10.1090/tran/8309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from an integrable rank-n vertex model, we construct an explicit family of partition functions indexed by compositions mu = (mu(1), ..., mu(n)). Using the Yang-Baxter algebra of the model and a certain rotation operation that acts on our partition functions, we show that they are eigenfunctions of the Cherednik-Dunkl operators Y-i for all 1 <= i <= n, and are thus equal to nonsymmetric Macdonald polynomials E-mu. Our partition functions have the combinatorial interpretation of ensembles of coloured lattice paths which traverse a cylinder. Applying a simple bijection to such path ensembles, we show how to recover the well-known combinatorial formula for E-mu due to Haglund-Haiman-Loehr.
引用
收藏
页码:8353 / 8397
页数:45
相关论文
共 44 条
  • [1] Dynamical stochastic higher spin vertex models
    Aggarwal, Amol
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (03): : 2659 - 2735
  • [2] Alexandersson P., 2016, ARXIV
  • [3] Generalized matrix Ansatz in the multispecies exclusion process-the partially asymmetric case
    Arita, Chikashi
    Ayyer, Arvind
    Mallick, Kirone
    Prolhac, Sylvain
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
  • [4] STOCHASTIC SIX-VERTEX MODEL IN A HALF-QUADRANT AND HALF-LINE OPEN ASYMMETRIC SIMPLE EXCLUSION PROCESS
    Barraquand, Guillaume
    Borodin, Alexei
    Corwin, Ivan
    Wheeler, Michael
    [J]. DUKE MATHEMATICAL JOURNAL, 2018, 167 (13) : 2457 - 2529
  • [5] Baxter R., 1989, EXACTLY SOLVED MODEL
  • [6] TRIGONOMETRIC SOLUTIONS OF TRIANGLE EQUATIONS AND CLASSICAL LIE-ALGEBRAS
    BAZHANOV, VV
    [J]. PHYSICS LETTERS B, 1985, 159 (4-6) : 321 - 324
  • [7] BOGOLIUBOV NM, 1985, LECT NOTES PHYS, V242, P220
  • [8] Borodin A., 2016, ARXIV
  • [9] Borodin A., 2018, ARXIV
  • [10] Spin q-Whittaker polynomials
    Borodin, Alexei
    Wheeler, Michael
    [J]. ADVANCES IN MATHEMATICS, 2021, 376