Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine Learning Model

被引:58
作者
Meng, Lingbin [1 ]
Zhang, Jing [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Mech & Energy Engn, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
SOLIDIFICATION MICROSTRUCTURE; FLUID-DYNAMICS; FABRICATION; PREDICTION; STRENGTH; POROSITY; FLOW;
D O I
10.1007/s11837-019-03792-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a Gaussian process (GP)-based machine learning model is developed to predict the remelted depth of single tracks, as a function of combined laser power and laser scan speed in a laser powder bed fusion process. The GP model is trained by both simulation and experimental data from the literature. The mean absolute prediction error magnified by the GP model is only 0.6 mu m for a powder bed with layer thickness of 30 mu m, suggesting the adequacy of the GP model. Then, the process design maps of two metals, 316L and 17-4 PH stainless steels, are developed using the trained model. The normalized enthalpy criterion of identifying keyhole mode is evaluated for both stainless steels. For 316L, the result suggests that the Delta Hhs >= 30\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \frac{\Delta H}{{h_{s} }} \ge 30 $$\end{document} criterion should be related to the powder layer thickness. For 17-4 PH, the criterion should be revised to Delta Hhs >= 25\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \frac{\Delta H}{{h_{s} }} \ge 25 $$\end{document}.
引用
收藏
页码:420 / 428
页数:9
相关论文
共 36 条
  • [1] ALPAYDIN E, INTRO MACHINE LEARNI
  • [2] [Anonymous], 2018, THESIS
  • [3] Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures
    Bontha, Srikanth
    Klingbeil, Nathan W.
    Kobryn, Pamela A.
    Fraser, Hamish L.
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 178 (1-3) : 135 - 142
  • [4] Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning
    Caiazzo, Fabrizia
    Caggiano, Alessandra
    [J]. MATERIALS, 2018, 11 (03)
  • [5] On the choice of electromagnetic model for short high-intensity arcs, applied to welding
    Choquet, Isabelle
    Shirvan, Alireza Javidi
    Nilsson, Hakan
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (20)
  • [6] A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding
    Courtois, Mickael
    Carin, Muriel
    Le Masson, Philippe
    Gaied, Sadok
    Balabane, Mikhael
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (50)
  • [7] EAGAR TW, 1983, WELD J, V62, pS346
  • [8] GPy, GPy: A gaussian process framework in python
  • [9] Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging
    Guo, Qilin
    Zhao, Cang
    Escano, Luis I.
    Young, Zachary
    Xiong, Lianghua
    Fezzaa, Kamel
    Everhart, Wes
    Brown, Ben
    Sun, Tao
    Chen, Lianyi
    [J]. ACTA MATERIALIA, 2018, 151 : 169 - 180
  • [10] Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting
    Gusarov, A. V.
    Yadroitsev, I.
    Bertrand, Ph.
    Smurov, I.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (07): : 1 - 10