Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine Learning Model

被引:57
|
作者
Meng, Lingbin [1 ]
Zhang, Jing [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Mech & Energy Engn, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
SOLIDIFICATION MICROSTRUCTURE; FLUID-DYNAMICS; FABRICATION; PREDICTION; STRENGTH; POROSITY; FLOW;
D O I
10.1007/s11837-019-03792-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a Gaussian process (GP)-based machine learning model is developed to predict the remelted depth of single tracks, as a function of combined laser power and laser scan speed in a laser powder bed fusion process. The GP model is trained by both simulation and experimental data from the literature. The mean absolute prediction error magnified by the GP model is only 0.6 mu m for a powder bed with layer thickness of 30 mu m, suggesting the adequacy of the GP model. Then, the process design maps of two metals, 316L and 17-4 PH stainless steels, are developed using the trained model. The normalized enthalpy criterion of identifying keyhole mode is evaluated for both stainless steels. For 316L, the result suggests that the Delta Hhs >= 30\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \frac{\Delta H}{{h_{s} }} \ge 30 $$\end{document} criterion should be related to the powder layer thickness. For 17-4 PH, the criterion should be revised to Delta Hhs >= 25\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \frac{\Delta H}{{h_{s} }} \ge 25 $$\end{document}.
引用
收藏
页码:420 / 428
页数:9
相关论文
共 50 条
  • [1] Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine Learning Model
    Lingbin Meng
    Jing Zhang
    JOM, 2020, 72 : 420 - 428
  • [2] Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel
    Gustavo Tapia
    Saad Khairallah
    Manyalibo Matthews
    Wayne E. King
    Alaa Elwany
    The International Journal of Advanced Manufacturing Technology, 2018, 94 : 3591 - 3603
  • [3] Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel
    Tapia, Gustavo
    Khairallah, Saad
    Matthews, Manyalibo
    King, Wayne E.
    Elwany, Alaa
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (9-12): : 3591 - 3603
  • [4] Machine learning for advancing laser powder bed fusion of stainless steel
    Abd-Elaziem, Walaa
    Elkatatny, Sally
    Sebaey, Tamer A.
    Darwish, Moustafa A.
    El-Baky, Marwa A. Abd
    Hamada, Atef
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 4986 - 5016
  • [5] A universal predictor-based machine learning model for optimal process maps in laser powder bed fusion process
    Gu, Zhaochen
    Sharma, Shashank
    Riley, Daniel A.
    Pantawane, Mangesh, V
    Joshi, Sameehan S.
    Fu, Song
    Dahotre, Narendra B.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (08) : 3341 - 3363
  • [6] A universal predictor-based machine learning model for optimal process maps in laser powder bed fusion process
    Zhaochen Gu
    Shashank Sharma
    Daniel A. Riley
    Mangesh V. Pantawane
    Sameehan S. Joshi
    Song Fu
    Narendra B. Dahotre
    Journal of Intelligent Manufacturing, 2023, 34 : 3341 - 3363
  • [7] A Gaussian Process-Based extended Goldak heat source model for finite element simulation of laser powder bed fusion additive manufacturing process
    Cheng, Jiahao
    Huo, Yang
    Fernandez-Zelaia, Patxi
    Hu, Xiaohua
    Li, Mei
    Sun, Xin
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [8] Process Parameter Optimisation in Laser Powder Bed Fusion of Duplex Stainless Steel 2205
    Mayoral, N.
    Medina, L.
    Rodriguez-Aparicio, R.
    Diaz, A.
    Alegre, J. M.
    Cuesta, I. I.
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [9] MACHINE LEARNING ASSISTED PREDICTION OF THE MANUFACTURABILITY OF LASER-BASED POWDER BED FUSION PROCESS
    Zhang, Ying
    Dong, Guoying
    Yang, Sheng
    Zhao, Yaoyao Fiona
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 1, 2020,
  • [10] Powder Bed Based Laser Additive Manufacturing Process of Stainless Steel: A Review
    Adeyemi, Adebola
    Akinlabi, Esther T.
    Mahamood, Rasheedat M.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (09) : 18510 - 18517