Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis

被引:359
作者
An, Fengying [1 ]
Zhao, Qiong [1 ]
Ji, Yusi [1 ]
Li, Wenyang [1 ]
Jiang, Zhiqiang [1 ]
Yu, Xiangchun [1 ]
Zhang, Chen [1 ]
Han, Ying [1 ]
He, Wenrong [1 ]
Liu, Yidong [2 ,3 ]
Zhang, Shuqun [2 ,3 ]
Ecker, Joseph R. [4 ]
Guo, Hongwei [1 ]
机构
[1] Peking Univ, Coll Life Sci, Natl Lab Prot Engn & Plant Genet Engn, Beijing 100871, Peoples R China
[2] Univ Missouri, Div Biochem, Columbia, MO 65211 USA
[3] Univ Missouri, Bond Life Sci Ctr, Columbia, MO 65211 USA
[4] Salk Inst Biol Studies, Plant Biol Lab, La Jolla, CA 92037 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
RECEPTOR GENE FAMILY; RESPONSE PATHWAY; SIGNAL-TRANSDUCTION; COP9; SIGNALOSOME; ENDOPLASMIC-RETICULUM; STRESS-RESPONSE; PROTEIN; THALIANA; PLANTS; BIOSYNTHESIS;
D O I
10.1105/tpc.110.076588
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation.
引用
收藏
页码:2384 / 2401
页数:18
相关论文
共 58 条
  • [1] Abeles F. B., 1992, ETHYLENE PLANT BIOL
  • [2] EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis
    Alonso, JM
    Hirayama, T
    Roman, G
    Nourizadeh, S
    Ecker, JR
    [J]. SCIENCE, 1999, 284 (5423) : 2148 - 2152
  • [3] Genome-wide Insertional mutagenesis of Arabidopsis thaliana
    Alonso, JM
    Stepanova, AN
    Leisse, TJ
    Kim, CJ
    Chen, HM
    Shinn, P
    Stevenson, DK
    Zimmerman, J
    Barajas, P
    Cheuk, R
    Gadrinab, C
    Heller, C
    Jeske, A
    Koesema, E
    Meyers, CC
    Parker, H
    Prednis, L
    Ansari, Y
    Choy, N
    Deen, H
    Geralt, M
    Hazari, N
    Hom, E
    Karnes, M
    Mulholland, C
    Ndubaku, R
    Schmidt, I
    Guzman, P
    Aguilar-Henonin, L
    Schmid, M
    Weigel, D
    Carter, DE
    Marchand, T
    Risseeuw, E
    Brogden, D
    Zeko, A
    Crosby, WL
    Berry, CC
    Ecker, JR
    [J]. SCIENCE, 2003, 301 (5633) : 653 - 657
  • [4] Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis
    Alonso, JM
    Stepanova, AN
    Solano, R
    Wisman, E
    Ferrari, S
    Ausubel, FM
    Ecker, JR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) : 2992 - 2997
  • [5] Bechtold N, 1998, METH MOL B, V82, P259
  • [6] Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling
    Bethke, Gerit
    Unthan, Tino
    Uhrig, Joachim F.
    Poeschl, Yvonne
    Gust, Andrea A.
    Scheel, Dierk
    Lee, Justin
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (19) : 8067 - 8072
  • [7] The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling
    Binder, Brad M.
    Walker, Joseph M.
    Gagne, Jennifer M.
    Emborg, Thomas J.
    Hemmann, Georg
    Bleecker, Anthony B.
    Vierstra, Richard D.
    [J]. PLANT CELL, 2007, 19 (02) : 509 - 523
  • [8] Ethylene: A gaseous signal molecule in plants
    Bleecker, AB
    Kende, H
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 : 1 - +
  • [9] INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA
    BLEECKER, AB
    ESTELLE, MA
    SOMERVILLE, C
    KENDE, H
    [J]. SCIENCE, 1988, 241 (4869) : 1086 - 1089
  • [10] The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein
    Chae, HS
    Faure, F
    Kieber, JJ
    [J]. PLANT CELL, 2003, 15 (02) : 545 - 559