Derivations with annihilator conditions in prime rings

被引:0
作者
Dhara, Basudeb [1 ]
Sharma, R. K.
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Math, New Delhi 110016, India
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2007年 / 71卷 / 1-2期
关键词
prime ring; derivation; extended centroid; Martindale quotient ring;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring of char R not equal 2 with a derivation d and U a noncentral Lie ideal. If a epsilon R, such that au(s)(d(u))(n)u(t) epsilon Z(R) for all u epsilon U and s(>= 0), t(>= 0), n(>= 1) fixed positive integers, then either a = 0 or R satisfies S-4, the standard identity in four variables.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 17 条
[11]   DIFFERENTIAL IDENTITIES, LIE IDEALS, AND POSNER THEOREMS [J].
LANSKI, C .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 134 (02) :275-297
[12]   AN ENGEL CONDITION WITH DERIVATION [J].
LANSKI, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) :731-734
[13]   A result on derivations [J].
Lee, TK ;
Lin, JS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) :1687-1691
[14]   PRIME RINGS SATISFYING A GENERALIZED POLYNOMIAL IDENTITY [J].
MARTINDALE, WS .
JOURNAL OF ALGEBRA, 1969, 12 (04) :576-+
[15]  
Posner E. C., 1957, P AM MATH SOC, V8, P1093, DOI [DOI 10.1090/S0002-9939-1957-0095863-0, 10.1090/S0002-9939-1957-0095863-0]
[16]  
SHARMA RK, 2005, TAMSUI OXF J MATH SC, V21, P71
[17]  
[No title captured]