Derivations with annihilator conditions in prime rings

被引:0
作者
Dhara, Basudeb [1 ]
Sharma, R. K.
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Math, New Delhi 110016, India
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2007年 / 71卷 / 1-2期
关键词
prime ring; derivation; extended centroid; Martindale quotient ring;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring of char R not equal 2 with a derivation d and U a noncentral Lie ideal. If a epsilon R, such that au(s)(d(u))(n)u(t) epsilon Z(R) for all u epsilon U and s(>= 0), t(>= 0), n(>= 1) fixed positive integers, then either a = 0 or R satisfies S-4, the standard identity in four variables.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 17 条
[1]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[2]  
BERGEN J, PAC J MATH, V132, P209
[3]  
Bresar M., 1990, MATH J OKAYAMA U, V32, P83
[4]   Interferon-inducible genes are major targets of human papillomavirus type 31: Insights from microarray analysis [J].
Chang, YJE ;
Laimins, LA .
DISEASE MARKERS, 2001, 17 (03) :139-142
[5]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728
[6]   PRIME NONASSOCIATIVE ALGEBRAS [J].
ERICKSON, TS ;
MARTINDALE, WS ;
OSBORN, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (01) :49-63
[7]  
HERSTEIN IN, 1982, CONTEMPORARY MATH, V13
[8]  
HERSTEIN IN, 1969, TOPICS RING THEORY
[9]  
HESREIN IN, 1979, J ALGEBRA, V60, P567
[10]  
Kharchenko VK., 1978, ALGEBR LOG+, V17, P155, DOI [10.1007/BF01670115, DOI 10.1007/BF01670115]