ON ASYMPTOTICALLY OPTIMAL TOWERS OVER QUADRATIC FIELDS RELATED TO GAUSS HYPERGEOMETRIC FUNCTIONS

被引:5
|
作者
Hasegawa, Takehiro [1 ]
机构
[1] Waseda Univ, Sch Educ, Dept Math, Tokyo 1698050, Japan
关键词
Towers of function fields; rational points; finite fields; hypergeometric functions; Deuring's polynomial; ALGEBRAIC-GEOMETRIC CODES; FINITE-FIELDS; TAME TOWERS; DIFFERENTIAL-EQUATIONS; ELLIPTIC-CURVES; CONSTRUCTION; INVARIANTS; ALGORITHM; SEQUENCE;
D O I
10.1142/S1793042110003344
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define two asymptotically optimal towers over quadratic fields, and give the explicit descriptions of the ramification loci and the sets of places splitting completely, which relate to the elliptic modular curves X(0)(4(n)) and X(0)(3(n)), respectively. Moreover, in the last section, we determine completely the modularity of a tower given by Maharaj and Wulftange in [18].
引用
收藏
页码:989 / 1009
页数:21
相关论文
共 21 条
  • [1] Hypergeometric functions over finite fields
    Noriyuki Otsubo
    The Ramanujan Journal, 2024, 63 : 55 - 104
  • [2] Hypergeometric Functions Over Finite Fields
    Fuselier, Jenny
    Long, Ling
    Ramakrishna, Ravi
    Swisher, Holly
    Tu, Fang-Ting
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 280 (1382) : 1 - +
  • [3] Hypergeometric functions over finite fields
    Otsubo, Noriyuki
    RAMANUJAN JOURNAL, 2024, 63 (01) : 55 - 104
  • [4] MOMENTS OF GAUSSIAN HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS
    Pal, Ankan
    Roy, Bidisha
    Sadek, Mohammad
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2023, 69 (01) : 77 - 92
  • [5] Product formulas for hypergeometric functions over finite fields
    Noriyuki Otsubo
    Takato Senoue
    Research in Number Theory, 2022, 8
  • [6] Product formulas for hypergeometric functions over finite fields
    Otsubo, Noriyuki
    Senoue, Takato
    RESEARCH IN NUMBER THEORY, 2022, 8 (04)
  • [7] HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS AND THEIR RELATIONS TO ALGEBRAIC CURVES
    Vega, M. Valentina
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (08) : 2171 - 2195
  • [8] Quadratic recursive towers of function fields over F2
    Stichtenoth, Henning
    Tutdere, Seher
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (05) : 665 - 682
  • [9] A cubic transformation formula for Appell–Lauricella hypergeometric functions over finite fields
    Frechette S.
    Swisher H.
    Tu F.-T.
    Research in Number Theory, 2018, 4 (2)
  • [10] Evaluation of Certain Hypergeometric Functions over Finite Fields
    Tu, Fang-Ting
    Yang, Yifan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14