A remark on nonequivalent star products via reduction for CPn

被引:7
作者
Waldmann, S [1 ]
机构
[1] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
deformation quantization; nonequivalent star products; phase space reduction;
D O I
10.1023/A:1007415208707
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we construct nonequivalent star products on CPn by phase space reduction. It turns out that the nonequivalent star products occur very natural in the context of phase space reduction by deforming the momentum map of the U(1)-action on Cn+1\[O] into a quantum momentum map and the corresponding momentum value into a quantum momentum value such that the level set, i.e. the 'constraint surface', of the quantum momentum map coincides with the classical one. All equivalence classes of star products on CPn are obtained by this construction.
引用
收藏
页码:331 / 338
页数:8
相关论文
共 17 条
[1]  
ABRAHAM R, 1985, FDN MECH
[2]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[3]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[4]   Equivalence of star products [J].
Bertelson, M ;
Cahen, M ;
Gutt, S .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A93-A107
[5]   A Fedosov star product of the Wick type for Kahler manifolds [J].
Bordemann, M ;
Waldmann, S .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (03) :243-253
[6]   Subalgebras with converging star products in deformation quantization: An algebraic construction for CPn [J].
Bordemann, M ;
Brischle, M ;
Emmrich, C ;
Waldmann, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) :6311-6323
[7]   Phase space reduction for star-products: An explicit construction for CPn [J].
Bordemann, M ;
Brischle, M ;
Emmrich, C ;
Waldmann, S .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (04) :357-371
[8]   EXISTENCE OF STAR-PRODUCTS AND OF FORMAL DEFORMATIONS OF THE POISSON LIE-ALGEBRA OF ARBITRARY SYMPLECTIC-MANIFOLDS [J].
DEWILDE, M ;
LECOMTE, PBA .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (06) :487-496
[9]  
Fedosov Boris, 1996, MATH TOPICS, V9
[10]   A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION [J].
FEDOSOV, BV .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 40 (02) :213-238