Closed holomorphic 1-forms without zeros on Stein manifolds

被引:2
作者
Majcen, Irena [1 ]
机构
[1] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
D O I
10.1007/s00209-007-0153-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a stein mainfold admits a closed holomorphic 1-form without zeros in every class of the first cohomology group. We also prove an approximation result for closed holomorphic 1-forms without zeros defined in a neighborhood of a compact subset.
引用
收藏
页码:925 / 937
页数:13
相关论文
共 17 条
[1]  
CARTAN H, 1950, P INT C MATH, V1, P152
[2]   SOME REMARKS ON PARALLELIZABLE STEIN MANIFOLDS [J].
FORSTER, O .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (05) :712-&
[3]   PLUNGING OF STEIN VARIABLES [J].
FORSTER, O .
COMMENTARII MATHEMATICI HELVETICI, 1970, 45 (02) :170-&
[4]   Holomorphic submersions from Stein manifolds [J].
Forstneric, F .
ANNALES DE L INSTITUT FOURIER, 2004, 54 (06) :1913-+
[5]   Noncritical holomorphic functions on Stein manifolds [J].
Forstneric, F .
ACTA MATHEMATICA, 2003, 191 (02) :143-189
[6]   Oka's principle for holomorphic submersions with sprays [J].
Forstneric, F ;
Prezelj, J .
MATHEMATISCHE ANNALEN, 2002, 322 (04) :633-666
[7]   Extending holomorphic sections from complex subvarieties [J].
Forstneric, F ;
Prezelj, J .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (01) :43-68
[8]   Oka's principle for holomorphic fiber bundles with sprays [J].
Forstneric, F ;
Prezelj, J .
MATHEMATISCHE ANNALEN, 2000, 317 (01) :117-154
[9]  
Gromov M., 1989, J. Amer. Math. Soc., V2, P851
[10]   IMMERSION OF OPEN RIEMANN SURFACES [J].
GUNNING, RC ;
NARASIMHAN .
MATHEMATISCHE ANNALEN, 1967, 174 (02) :103-&