Enhanced betatron radiation in strongly magnetized plasma

被引:2
作者
Pan, K. Q. [1 ,2 ]
Zheng, C. Y. [1 ,2 ,3 ]
Cao, L. H. [1 ,3 ,4 ]
Liu, Z. J. [3 ]
He, X. T. [1 ,2 ,3 ]
机构
[1] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[2] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr IFSA CICIFSA, Shanghai 200240, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[4] Peking Univ, Minist Educ, Key Lab High Energy Dens Phys Simulat, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
TERAHERTZ RADIATION; INSTABILITY; GENERATION;
D O I
10.1063/1.4947545
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Betatron radiation in strongly magnetized plasma is investigated by two dimensional (2D) particle-in-cell (PIC) simulations. The results show that the betatron radiation in magnetized plasmas is strongly enhanced and is more collimated compared to that in unmagnetized plasma. Single particle model analysis shows that the frequency and the amplitude of the electrons's betatron oscillation are strongly influenced by the axial external magnetic field and the axial self-generated magnetic field. And the 2D PIC simulation shows that the axial magnetic field is actually induced by the external magnetic field and tends to increase the betatron frequency. By disturbing the perturbation of the plasma density in the laser-produced channel, the hosing instability is also suppressed, which results in a better angular distribution and a better symmetry of the betatron radiation. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Fluctuation Dynamo in a Collisionless, Weakly Magnetized Plasma
    St-Onge, Denis A.
    Kunz, Matthew W.
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 863 (02)
  • [42] Convective laser filamentation instability in magnetized plasma
    Bawa'aneh, M. S.
    Assayed, Ghada
    Said, M. R.
    Al-Awfi, S.
    CANADIAN JOURNAL OF PHYSICS, 2014, 92 (06) : 504 - 508
  • [43] Vortex Electromagnetic Wave Propagation in Magnetized Plasma
    Wu, Yiyun
    Liu, Moran
    Zhou, Chen
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (12) : 9411 - 9420
  • [44] Electron acceleration by wave turbulence in a magnetized plasma
    Rigby, A.
    Cruz, F.
    Albertazzi, B.
    Bamford, R.
    Bell, A. R.
    Cross, J. E.
    Fraschetti, F.
    Graham, P.
    Hara, Y.
    Kozlowski, P. M.
    Kuramitsu, Y.
    Lamb, D. Q.
    Lebedev, S.
    Marques, J. R.
    Miniati, F.
    Morita, T.
    Oliver, M.
    Reville, B.
    Sakawa, Y.
    Sarkar, S.
    Spindloe, C.
    Trines, R.
    Tzeferacos, P.
    Silva, L. O.
    Bingham, R.
    Koenig, M.
    Gregori, G.
    NATURE PHYSICS, 2018, 14 (05) : 475 - +
  • [45] THE ELECTROWEAK PHASE TRANSITION IN A SPONTANEOUSLY MAGNETIZED PLASMA
    Minaiev, P.
    Skalozub, V
    UKRAINIAN JOURNAL OF PHYSICS, 2019, 64 (08): : 710 - 713
  • [46] Dust acoustic waves in a magnetized anodic plasma
    Trottenberg, T
    Block, D
    Piel, A
    NEW VISTAS IN DUSTY PLASMAS, 2005, 799 : 510 - 513
  • [47] Laser-plasma interactions in magnetized environment
    Shi, Yuan
    Qin, Hong
    Fisch, Nathaniel J.
    PHYSICS OF PLASMAS, 2018, 25 (05)
  • [48] Strongly magnetized accretion discs: structure and accretion from global magnetohydrodynamic simulations
    Mishra, Bhupendra
    Begelman, Mitchell C.
    Armitage, Philip J.
    Simon, Jacob B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 492 (02) : 1855 - 1868
  • [49] Excitation of terahertz radiation by parametric coupling of a laser beam and its frequency shifted second harmonic in a corrugated magnetized plasma
    Mann, Kusum Lata
    Sajal, Vivek
    Panwar, Anuraj
    Sharma, Navneet K.
    OPTIK, 2019, 179 : 401 - 407
  • [50] Beating of dark hollow laser beams in magnetized plasma under the influence of DC electric field to generate THz radiation
    Thakur, Vishal
    Kumar, Sandeep
    APPLIED PHYSICS B-LASERS AND OPTICS, 2024, 130 (09):