GL(V)-invariant Ulrich bundles on Grassmannians

被引:0
作者
Costa, L. [1 ]
Miro-Roig, R. M. [1 ]
机构
[1] Fac Matemat, Dept Algebra & Geometria, Barcelona 08007, Spain
关键词
REPRESENTATION TYPE; MODULES;
D O I
10.1007/s00208-014-1076-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a full classification of all homogeneous Ulrich bundles on a Grassmannian of -planes on P-n.
引用
收藏
页码:443 / 457
页数:15
相关论文
共 12 条
  • [1] MAXIMALLY GENERATED COHEN-MACAULAY MODULES
    BRENNAN, JP
    HERZOG, J
    ULRICH, B
    [J]. MATHEMATICA SCANDINAVICA, 1987, 61 (02) : 181 - 203
  • [2] ACM bundles on cubic surfaces
    Casanellas, Marta
    Hartshorne, Robin
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) : 709 - 731
  • [3] The representation type of Segre varieties
    Costa, Laura
    Miro-Roig, Rosa M.
    Pons-Llopis, Joan
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 1995 - 2013
  • [4] Resultants and Chow forms via exterior syzygies
    Eisenbud, D
    Schreyer, FO
    Weyman, J
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 537 - 579
  • [5] Boij-Soderberg Theory
    Eisenbud, David
    Schreyer, Frank-Olaf
    [J]. COMBINATORIAL ASPECTS OF COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY: THE ABEL SYMPOSIUM 2009, 2011, 6 : 35 - +
  • [6] On the Cohen-Macaulay modules of graded subrings
    Hanes, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) : 735 - 756
  • [7] n-Dimensional Fano varieties of wild representation type
    Miro-Roig, Rosa M.
    Pons-Llopis, Joan
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (10) : 1867 - 1884
  • [8] The representation type of rational normal scrolls
    Miró-Roig R.M.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2013, 62 (1) : 153 - 164
  • [9] Miró-Roig RM, 2013, ALGEBR REPRESENT TH, V16, P1135, DOI 10.1007/s10468-012-9349-z
  • [10] MUKAI S, 1993, CONF PR LECT NOT ALG, V1, P19