Long words in maximum entropy phonotactic grammars

被引:9
作者
Daland, Robert [1 ]
机构
[1] Univ Calif Los Angeles, Dept Linguist, 3125 Campbell Hall, Los Angeles, CA 90095 USA
关键词
HARMONIC GRAMMAR; MODEL; PROBABILITY;
D O I
10.1017/S0952675715000251
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
A phonotactic grammar assigns a well-formedness score to all possible surface forms. This paper considers whether phonotactic grammars should be probabilistic, and gives several arguments that they need to be. Hayes & Wilson (2008) demonstrate the promise of a maximum entropy Harmonic Grammar as a probabilistic phonotactic grammar. This paper points out a theoretical issue with maxent phonotactic grammars: they are not guaranteed to assign a well-defined probability distribution, because sequences that contain arbitrary repetitions of unmarked sequences may be underpenalised. The paper motivates a solution to this issue: include a *STRUCT constraint. A mathematical proof of necessary and sufficient conditions to avoid the underpenalisation problem are given in online supplementary materials.
引用
收藏
页码:353 / 383
页数:31
相关论文
共 57 条
[1]  
[Anonymous], 2003, THESIS
[2]  
[Anonymous], 1968, The Sound Pattern of English
[3]  
[Anonymous], HARMONIC GR IN PRESS
[4]  
Anttila Arto., 1997, VARIATION CHANGE PHO, P35, DOI DOI 10.1075/CILT.146.04ANT
[5]   Towards a psycholinguistic computational model for morphological parsing [J].
Baayen, RH ;
Schreuder, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 358 (1769) :1281-1292
[6]   Squibs and Discussion [J].
Bane, Max ;
Riggle, Jason .
LINGUISTIC INQUIRY, 2012, 43 (04) :695-706
[7]   Empirical tests of the Gradual Learning Algorithm [J].
Boersma, P ;
Hayes, B .
LINGUISTIC INQUIRY, 2001, 32 (01) :45-86
[8]  
Bowers Dustin, 2014, PHON 2014 MIT
[9]  
Chi ZY, 1998, COMPUT LINGUIST, V24, P299
[10]  
Chodroff Eleanor, 2014, LABPHON 14 14 C LAB