Bioinformatics and network-based screening and discovery of potential molecular targets and small molecular drugs for breast cancer

被引:18
作者
Alam, Md Shahin [1 ,2 ]
Sultana, Adiba [1 ,2 ]
Sun, Hongyang [1 ,2 ]
Wu, Jin [1 ,2 ]
Guo, Fanfan [3 ]
Li, Qing [4 ]
Ren, Haigang [1 ,2 ]
Hao, Zongbing [1 ,2 ]
Zhang, Yi [3 ]
Wang, Guanghui [1 ,2 ]
机构
[1] Soochow Univ, Dept Pharmacol, Lab Mol Neuropathol, Jiangsu Key Lab Neuropsychiat Dis, Suzhou, Jiangsu, Peoples R China
[2] Soochow Univ, Coll Pharmaceut Sci, Suzhou, Jiangsu, Peoples R China
[3] Soochow Univ, Coll Pharmaceut Sci, Dept Pharmacol, Suzhou, Jiangsu, Peoples R China
[4] Soochow Univ, Peoples Hosp Taicang 1, Dept Gastroenterol, Taicang Affiliated Hosp, Suzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Breast cancer; gene expression profiles; molecular targets; bioinformatics and network-based discovery; molecular docking analysis; drug repurposing; apoptotic cell death; EXPRESSION; MASITINIB; ASSOCIATION; DEGRADATION; STATISTICS; SURVIVAL; DOCKING; GENES;
D O I
10.3389/fphar.2022.942126
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Accurate identification of molecular targets of disease plays an important role in diagnosis, prognosis, and therapies. Breast cancer (BC) is one of the most common malignant cancers in women worldwide. Thus, the objective of this study was to accurately identify a set of molecular targets and small molecular drugs that might be effective for BC diagnosis, prognosis, and therapies, by using existing bioinformatics and network-based approaches. Nine gene expression profiles (GSE54002, GSE29431, GSE124646, GSE42568, GSE45827, GSE10810, GSE65216, GSE36295, and GSE109169) collected from the Gene Expression Omnibus (GEO) database were used for bioinformatics analysis in this study. Two packages, LIMMA and clusterProfiler, in R were used to identify overlapping differential expressed genes (oDEGs) and significant GO and KEGG enrichment terms. We constructed a PPI (protein-protein interaction) network through the STRING database and identified eight key genes (KGs) EGFR, FN1, EZH2, MET, CDK1, AURKA, TOP2A, and BIRC5 by using six topological measures, betweenness, closeness, eccentricity, degree, MCC, and MNC, in the Analyze Network tool in Cytoscape. Three online databases GSCALite, Network Analyst, and GEPIA were used to analyze drug enrichment, regulatory interaction networks, and gene expression levels of KGs. We checked the prognostic power of KGs through the prediction model using the popular machine learning algorithm support vector machine (SVM). We suggested four TFs (TP63, MYC, SOX2, and KDM5B) and four miRNAs (hsa-mir-16-5p, hsa-mir-34a-5p, hsa-mir-1-3p, and hsa-mir-23b-3p) as key transcriptional and posttranscriptional regulators of KGs. Finally, we proposed 16 candidate repurposing drugs YM201636, masitinib, SB590885, GSK1070916, GSK2126458, ZSTK474, dasatinib, fedratinib, dabrafenib, methotrexate, trametinib, tubastatin A, BIX02189, CP466722, afatinib, and belinostat for BC through molecular docking analysis. Using BC cell lines, we validated that masitinib inhibits the mTOR signaling pathway and induces apoptotic cell death. Therefore, the proposed results might play an effective role in the treatment of BC patients.
引用
收藏
页数:17
相关论文
共 65 条
[1]  
Agency E.M., 2017, REFUSAL MARKETING AU
[2]   Integrated bioinformatics and statistical approaches to explore molecular biomarkers for breast cancer diagnosis, prognosis and therapies [J].
Alam, Md. Shahin ;
Sultana, Adiba ;
Reza, Md. Selim ;
Amanullah, Md ;
Kabir, Syed Rashel ;
Mollah, Md. Nurul Haque .
PLOS ONE, 2022, 17 (05)
[3]   Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer [J].
Alam, Shahin ;
Rahaman, Matiur ;
Sultana, Adiba ;
Wang, Guanghui ;
Mollah, Nurul Haque .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
[4]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[5]   Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges [J].
Butti, Ramesh ;
Das, Sumit ;
Gunasekaran, Vinoth Prasanna ;
Yadav, Amit Singh ;
Kumar, Dhiraj ;
Kundu, Gopal C. .
MOLECULAR CANCER, 2018, 17
[6]   Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020 [J].
Cao, Wei ;
Chen, Hong-Da ;
Yu, Yi-Wen ;
Li, Ni ;
Chen, Wan-Qing .
CHINESE MEDICAL JOURNAL, 2021, 134 (07) :783-791
[7]   Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis [J].
Clarke, Colin ;
Madden, Stephen F. ;
Doolan, Padraig ;
Aherne, Sinead T. ;
Joyce, Helena ;
O'Driscoll, Lorraine ;
Gallagher, William M. ;
Hennessy, Bryan T. ;
Moriarty, Michael ;
Crown, John ;
Kennedy, Susan ;
Clynes, Martin .
CARCINOGENESIS, 2013, 34 (10) :2300-2308
[8]  
Dallakyan S, 2015, METHODS MOL BIOL, V1263, P243, DOI 10.1007/978-1-4939-2269-7_19
[9]   Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis [J].
Deng, Jun-Li ;
Xu, Yun-hua ;
Wang, Guo .
FRONTIERS IN GENETICS, 2019, 10
[10]   Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2 [J].
Drayman, Nir ;
DeMarco, Jennifer K. ;
Jones, Krysten A. ;
Azizi, Saara-Anne ;
Froggatt, Heather M. ;
Tan, Kemin ;
Maltseva, Natalia Ivanovna ;
Chen, Siquan ;
Nicolaescu, Vlad ;
Dvorkin, Steve ;
Furlong, Kevin ;
Kathayat, Rahul S. ;
Firpo, Mason R. ;
Mastrodomenico, Vincent ;
Bruce, Emily A. ;
Schmidt, Madaline M. ;
Jedrzejczak, Robert ;
Munoz-Alia, Miguel A. ;
Schuster, Brooke ;
Nair, Vishnu ;
Han, Kyu-yeon ;
O'Brien, Amornrat ;
Tomatsidou, Anastasia ;
Meyer, Bjoern ;
Vignuzzi, Marco ;
Missiakas, Dominique ;
Botten, Jason W. ;
Brooke, Christopher B. ;
Lee, Hyun ;
Baker, Susan C. ;
Mounce, Bryan C. ;
Heaton, Nicholas S. ;
Severson, William E. ;
Palmer, Kenneth E. ;
Dickinson, Bryan C. ;
Joachimiak, Andrzej ;
Randall, Glenn ;
Tay, Savas .
SCIENCE, 2021, 373 (6557) :931-+