FIXED POINT THEOREMS FOR α-SET-VALUED QUASI-CONTRACTIONS IN b-METRIC SPACES

被引:0
作者
Paesano, Daniela [1 ]
Vetro, Pasquale [1 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
关键词
alpha-set-valued contractions; alpha-set-valued quasi-contractions; fixed points; b-metric spaces; ordered b-metric spaces; PARTIALLY ORDERED SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Samet et al. [B. Samet, C. Vetro and P. Vetro, Fixed point theorems for alpha-psi-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165] introduced the notion of alpha-psi-contractive mappings and established some fixed point results in the setting of complete metric spaces. In this paper, we introduce the notions of alpha-set-valued contraction and alpha-set-valued quasi-contraction and we give some fixed point theorems for such classes of mappings in the setting of b-metric spaces and ordered b-metric spaces. The presented theorems extend, unify and generalize several well-known comparable results in the existing literature.
引用
收藏
页码:685 / 696
页数:12
相关论文
共 27 条
[1]   A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces [J].
Abbas, Mujahid ;
Ali, Basit ;
Vetro, Calogero .
TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (03) :553-563
[2]   Fixed point theory for set-valued quasi-contraction maps in metric spaces [J].
Amini-Harandi, A. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1791-1794
[3]   A fixed point theorem for set-valued quasi-contractions in b-metric spaces [J].
Aydi, Hassen ;
Bota, Monica-Felicia ;
Karapinar, Erdal ;
Mitrovic, Slobodanka .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[4]   Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces [J].
Aydi, Hassen ;
Abbas, Mujahid ;
Vetro, Calogero .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (14) :3234-3242
[5]  
Bakhtin I. A., 1989, Functional Analysis, V30, P26, DOI DOI 10.1039/AP9892600037
[6]  
Banach S., 1922, Fund. math, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[7]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[8]   Common fixed points of generalized contractions on partial metric spaces and an application [J].
Ciric, Ljubomir ;
Samet, Bessem ;
Aydi, Hassen ;
Vetro, Calogero .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) :2398-2406
[9]  
Czerwik S., 1993, Acta Math. Inf. Univ. Ostrav., V5-11
[10]  
Czerwik S., 1998, Atti del Seminario Matematico e Fisico dell'Universita di Modena e Reggio Emilia, V46, P263