Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases

被引:533
作者
Nenon, David P. [1 ,3 ]
Pressler, Kimo [1 ]
Kang, Jun [3 ]
Koscher, Brent A. [1 ,3 ]
Olshansky, Jacob H. [1 ,3 ]
Osowiecki, Wojciech T. [1 ,3 ]
Koc, Matthew A. [1 ,3 ]
Wang, Lin-Wang [3 ]
Alivisatos, A. Paul [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
PHOTOLUMINESCENCE QUANTUM YIELD; LIGHT-EMITTING-DIODES; PEROVSKITE NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; HIGHLY LUMINESCENT; CDSE NANOCRYSTALS; DEFECT TOLERANCE; LIGAND-EXCHANGE; HIGH-EFFICIENCY; ANION-EXCHANGE;
D O I
10.1021/jacs.8b11035
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a general surface passivation mechanism for cesium lead halide perovskite materials (CsPbX3, X = Cl, Br, I) that is supported by a combined experimental and theoretical study of the nanocrystal surface chemistry. A variety of spectroscopic methods are employed together with ab initio calculations to identify surface halide vacancies as the predominant source of charge trapping. The number of surface traps per nanocrystal is quantified by H-1 NMR spectroscopy, and that number is consistent with a simple trapping model in which surface halide vacancies create deleterious under-coordinated lead atoms. These halide vacancies exhibit trapping behavior that differs among CsPbCl3, CsPbBr3, and CsPbI3. Ab initio calculations suggest that introduction of anionic X-type ligands can produce trap-free band gaps by altering the energetics of lead-based defect levels. General rules for selecting effective passivating ligand pairs are introduced by considering established principles of coordination chemistry. Introducing softer, anionic, X-type Lewis bases that target under-coordinated lead atoms results in absolute quantum yields approaching unity and monoexponential luminescence decay kinetics, thereby indicating full trap passivation. This work provides a systematic framework for preparing highly luminescent CsPbX3 nanocrystals with variable compositions and dimensionalities, thereby improving the fundamental understanding of these materials and informing future synthetic and post-synthetic efforts toward trap-free CsPbX3 nanocrystals.
引用
收藏
页码:17760 / 17772
页数:13
相关论文
共 105 条
[1]   Boosting the Photoluminescence of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals Covering a Wide Wavelength Range by Postsynthetic Treatment with Tetrafluoroborate Salts [J].
Ahmed, Tasnim ;
Seth, Sudipta ;
Samant, Anunay .
CHEMISTRY OF MATERIALS, 2018, 30 (11) :3633-3637
[2]   Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions [J].
Akkerman, Quinten A. ;
D'Innocenzo, Valerio ;
Accornero, Sara ;
Scarpellini, Alice ;
Petrozza, Annamaria ;
Prato, Mirko ;
Manna, Liberato .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (32) :10276-10281
[3]   Colloidal Nanocrystals as a Platform for Rapid Screening of Charge Trap Passivating Molecules for Metal Halide Perovskite Thin Films [J].
Alpert, Matthew R. ;
Niezgoda, J. Scott ;
Chen, Alexander Z. ;
Foley, Benjamin J. ;
Cuthriell, Shelby ;
Yoon, Lucy U. ;
Choi, Joshua J. .
CHEMISTRY OF MATERIALS, 2018, 30 (14) :4515-4526
[4]   Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding [J].
Anderson, Nicholas C. ;
Hendricks, Mark P. ;
Choi, Joshua J. ;
Owen, Jonathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18536-18548
[5]   Benchmark Assessment of Density Functional Methods on Group II-VI MX (M = Zn, Cd; X = S, Se, Te) Quantum Dots [J].
Azpiroz, Jon M. ;
Ugalde, Jesus M. ;
Infante, Ivan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (01) :76-89
[6]   Controlled Alloying of the Core-Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination [J].
Bae, Wan Ki ;
Padilha, Lazaro A. ;
Park, Young-Shin ;
McDaniel, Hunter ;
Robel, Istvan ;
Pietryga, Jeffrey M. ;
Klimov, Victor I. .
ACS NANO, 2013, 7 (04) :3411-3419
[7]   ELECTRONIC-STRUCTURE AND PHOTOEXCITED-CARRIER DYNAMICS IN NANOMETER-SIZE CDSE CLUSTERS [J].
BAWENDI, MG ;
WILSON, WL ;
ROTHBERG, L ;
CARROLL, PJ ;
JEDJU, TM ;
STEIGERWALD, ML ;
BRUS, LE .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1623-1626
[8]   Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids [J].
Boehme, Simon C. ;
Mikel Azpiroz, Jon ;
Aulin, Yaroslav V. ;
Grozema, Ferdinand C. ;
Vanmaekelbergh, Daniel ;
Siebbeles, Laurens D. A. ;
Infante, Ivan ;
Houtepen, Arjan J. .
NANO LETTERS, 2015, 15 (05) :3056-3066
[9]   Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair [J].
Bohn, Bernhard J. ;
Tong, Yu ;
Gramlich, Moritz ;
Lai, May Ling ;
Doeblinger, Markus ;
Wang, Kun ;
Hoye, Robert L. Z. ;
Mueller-Buschbaum, Peter ;
Stranks, Samuel D. ;
Urban, Alexander S. ;
Polavarapu, Lakshminarayana ;
Feldmann, Jochen .
NANO LETTERS, 2018, 18 (08) :5231-5238
[10]  
Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]