Cube factorizations of complete multipartite graphs

被引:0
作者
Wang, Jinhua [1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Peoples R China
基金
中国国家自然科学基金;
关键词
decomposition; factorization; cube; frame; uniform; 3-factorization; GROUP-DIVISIBLE DESIGNS; GENERALIZED CUBES; BLOCK SIZE-4; DECOMPOSITIONS; BLOCK-SIZE-4; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda K(hu) denote the lambda-fold complete multipartite graph with u parts of size h. A cube factorization of lambda K(hu) is a uniform 3-factorization of lambda K(hu) in which the components of each factor are cubes. We show that there exists a cube factorization of lambda K(hu) if and only if uh equivalent to 0 (mod 8), lambda(u - 1)h equivalent to 0 (mod 3) and u >= 2. It gives a new family of uniform 3-factorizations of lambda K(hu). We also establish the necessary and sufficient conditions for the existence of cube frames of lambda K(hu).
引用
收藏
页码:243 / 256
页数:14
相关论文
共 50 条
[21]   Maximal sets of Hamilton cycles in complete multipartite graphs IV [J].
Tidwell, David M. ;
Rodger, C. A. .
DISCRETE MATHEMATICS, 2022, 345 (08)
[22]   A Note on Decomposition of Tensor Product of Complete Multipartite Graphs into Gregarious Kite [J].
Elakkiya, A. Tamil .
Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 120 :295-299
[23]   Complete Multipartite Graphs Decompositions Using Mutually Orthogonal Graph Squares [J].
El-Mesady A. ;
Al-Mdallal Q. ;
Abdeljawad T. .
International Journal of Applied and Computational Mathematics, 2023, 9 (5)
[24]   Circular Intensely Orthogonal Double Cover Design of Balanced Complete Multipartite Graphs [J].
Higazy, M. ;
El-Mesady, A. ;
Mahmoud, Emad E. ;
Alkinani, Monagi H. .
SYMMETRY-BASEL, 2020, 12 (10) :1-13
[25]   C4p-frame of complete multipartite multigraphs [J].
Chitra, V. ;
Vadivu, A. Shanmuga ;
Muthusamy, A. .
AEQUATIONES MATHEMATICAE, 2013, 85 (03) :563-579
[26]   C4p-frame of complete multipartite multigraphs [J].
V. Chitra ;
A. Shanmuga Vadivu ;
A. Muthusamy .
Aequationes mathematicae, 2013, 85 :563-579
[27]   A Generalization of Orthogonal Factorizations in Graphs [J].
Guo Jun Li ;
Gui Zhen Liu .
Acta Mathematica Sinica, 2001, 17 :669-678
[28]   On (g, f)-factorizations of graphs [J].
Ma, RN ;
Gao, HS .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1997, 18 (04) :407-410
[29]   On (g, f)-factorizations of graphs [J].
Runnian M. ;
Hangshan G. .
Applied Mathematics and Mechanics, 1997, 18 (4) :407-410
[30]   ON(g,f)-FACTORIZATIONS OF GRAPHS [J].
马润年 ;
高行山 .
Applied Mathematics and Mechanics(English Edition), 1997, (04) :407-410