D1-brane in constant R-R 3-form flux and Nambu dynamics in string theory

被引:5
作者
Chu, Chong-Sun [1 ,2 ]
Ho, Pei-Ming [3 ,4 ]
机构
[1] Univ Durham, Ctr Particle Theory, Durham DH1 3LE, England
[2] Univ Durham, Dept Math, Durham DH1 3LE, England
[3] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan
关键词
D-branes; Non-Commutative Geometry; M-Theory; DEFORMATION QUANTIZATION; MECHANICS;
D O I
10.1007/JHEP02(2011)020
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider D1-string in a constant R-R 3-form flux background and analyze its low energy limit. The leading order low energy theory has reparametrization symmetry and is a generalization of an earlier work by Takhtajan. We show that the dynamical evolution of the theory takes a generalized Hamiltonian form in terms of a Nambu bracket. This description is formulated in terms of reparametrization invariant quantities and requires no fixing of the reparametrization symmetry. We also show that a Nambu-Poisson (p + 2)-bracket arises naturally in the reparametrization invariant description of the low energy theory of a p-brane in a constant (p + 2)-form flux background. For example, our results apply for a fundamental string in a constant NS-NS 3-form flux H-3 and an M2-brane in a constant 4-form flux F-4.
引用
收藏
页数:26
相关论文
共 22 条
[1]   SUPER P-BRANES [J].
ACHUCARRO, A ;
EVANS, JM ;
TOWNSEND, PK ;
WILTSHIRE, DL .
PHYSICS LETTERS B, 1987, 198 (04) :441-446
[2]  
Awata H, 2001, J HIGH ENERGY PHYS
[3]   REMARKS CONCERNING NAMBUS GENERALIZED MECHANICS [J].
BAYEN, F ;
FLATO, M .
PHYSICAL REVIEW D, 1975, 11 (10) :3049-3053
[4]   A noncommutative M-theory five-brane [J].
Bergshoeff, E ;
Berman, DS ;
van der Schaar, JP ;
Sundell, P .
NUCLEAR PHYSICS B, 2000, 590 (1-2) :173-197
[5]   Classical and quantum Nambu mechanics [J].
Curtright, T ;
Zachos, C .
PHYSICAL REVIEW D, 2003, 68 (08)
[6]   Deformation quantization of superintegrable systems and Nambu mechanics [J].
Curtright, TL ;
Zachos, CK .
NEW JOURNAL OF PHYSICS, 2002, 4 :83.1-83.16
[7]   Ternutator identities [J].
Devchand, Chandrashekar ;
Fairlie, David ;
Nuyts, Jean ;
Weingart, Gregor .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (47)
[8]   Deformation quantization and Nambu Mechanics [J].
Dito, G ;
Flato, M ;
Sternheimer, D ;
Takhtajan, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (01) :1-22
[9]   HAMILTONIAN REDUCTION OF UNCONSTRAINED AND CONSTRAINED SYSTEMS [J].
FADDEEV, L ;
JACKIW, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1692-1694
[10]   Necessary conditions for ternary algebras [J].
Fairlie, David B. ;
Nuyts, Jean .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (46)