Multiperiod model for the optimal production planning in the industrial gases sector

被引:13
|
作者
Fernandez, David [1 ,2 ]
Pozo, Carlos [3 ]
Folgado, Ruben [1 ]
Guillen-Gosalbez, Gonzalo [2 ,3 ]
Jimenez, Laureano [2 ]
机构
[1] Messer Iber Gases SAU, Autovia Tarragona Salou,Km 3-8, Tarragona 43480, Spain
[2] Univ Rovira & Virgili, Dept Engn Quim, Ave Paisos Catalans,26, E-43007 Tarragona, Spain
[3] Imperial Coll London, Ctr Proc Syst Engn, Dept Chem Engn, South Kensington Campus, London SW7 2AZ, England
关键词
Energy-intensive process; Multiperiod model; Optimization; Production scheduling; Cryogenic air separation; OPTIMIZATION; DEMAND; OPERATION; NETWORK; COMPRESSORS; APPLIANCES; BUILDINGS; REDUCTION; SAVINGS; DESIGN;
D O I
10.1016/j.apenergy.2017.08.064
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cryogenic air separation to produce nitrogen, oxygen and argon with high quality requirements is an energy-intensive industrial process that requires large quantities of electricity. The complexity in operating these networks stems from the volatile conditions, namely electricity prices and products demands, which vary every hour, creating a clear need for computer-aided tools to attain economic and energy savings. In this article, we present a multiperiod mixed-integer linear programming (MILP) model to determine the optimal production schedule of an industrial cryogenic air separation process so as to maximize the net profit by minimizing energy consumption (which is the main contributor to the operating costs). The capabilities of the model are demonstrated by means of its application to an existing industrial process, where significant improvements are attained through the implementation of the MILP.
引用
收藏
页码:667 / 682
页数:16
相关论文
共 50 条
  • [21] Optimal planning and infrastructure development for shale gas production
    Arredondo-Ramirez, Karla
    Maria Ponce-Ortega, Jose
    El-Halwagi, Mahmoud M.
    ENERGY CONVERSION AND MANAGEMENT, 2016, 119 : 91 - 100
  • [22] A disjunctive programming model and a rolling horizon algorithm for optimal multiperiod capacity expansion in a multiproduct batch plant
    Garcia-Ayala, Gabriela
    Rios-Mercado, Roger Z.
    Chacon-Mondragon, Oscar L.
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 46 : 29 - 38
  • [23] Optimal Production Planning for Primary Copper Production
    Harjunkoski, Iiro
    Zuber, Markus
    ATP EDITION, 2008, (09): : 28 - 32
  • [24] A mixed integer nonlinear multiperiod model for supply chain management of a company in the retail sector
    Teixeira, Ana
    Costa e Silva, Eliana
    Lopes, Cristina
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (02) : 997 - 1013
  • [25] Optimal Distribution-Inventory Planning of Industrial Gases. II. MINLP Models and Algorithms for Stochastic Cases
    You, Fengqi
    Pinto, Jose M.
    Grossmann, Ignacio E.
    Megan, Larry
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (05) : 2928 - 2945
  • [26] Heterogeneous prestressed precast beams multiperiod production planning problem: modeling and solution methods
    Araujo, Kennedy A. G.
    Bonates, Tiberius O.
    Prata, Bruno A.
    Pitombeira-Neto, Anselmo R.
    TOP, 2021, 29 (03) : 660 - 693
  • [27] Optimal producer well placement and production planning in an oil reservoir
    Tavallali, M. S.
    Karimi, I. A.
    Teo, K. M.
    Baxendale, D.
    Ayatollahi, Sh
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 55 : 109 - 125
  • [28] Optimal production planning in a petrochemical industry using multiple levels
    Kadambur, Rajasekhar
    Kotecha, Prakash
    COMPUTERS & INDUSTRIAL ENGINEERING, 2016, 100 : 133 - 143
  • [29] A coordinated production planning model with capacity expansion for supply chain networks
    Lin, Ming-Hua
    Tsai, Jung-Fa
    Wang, Pei-Chun
    Ho, Yu-Ting
    EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2019, 13 (04) : 435 - 460
  • [30] A multiproduct batch plant design model incorporating production planning and scheduling decisions under a multiperiod scenario
    Fumero, Yanina
    Susana Moreno, M.
    Corsano, Gabriela
    Montagna, Jorge M.
    23 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2013, 32 : 505 - 510