Large-Scale Cortical Networks for Hierarchical Prediction and Prediction Error in the Primate Brain
被引:135
作者:
Chao, Zenas C.
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Grad Sch Med, Dept Neurosci, Kyoto 6068501, Japan
Kyoto Univ, Fac Med, Kyoto 6068501, Japan
RIKEN Brain Sci Inst, Wako, Saitama 3510198, JapanKyoto Univ, Grad Sch Med, Dept Neurosci, Kyoto 6068501, Japan
Chao, Zenas C.
[1
,2
,3
]
Takaura, Kana
论文数: 0引用数: 0
h-index: 0
机构:
RIKEN Brain Sci Inst, Wako, Saitama 3510198, JapanKyoto Univ, Grad Sch Med, Dept Neurosci, Kyoto 6068501, Japan
Takaura, Kana
[3
]
Wang, Liping
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, Shanghai 200031, Peoples R ChinaKyoto Univ, Grad Sch Med, Dept Neurosci, Kyoto 6068501, Japan
Wang, Liping
[4
]
Fujii, Naotaka
论文数: 0引用数: 0
h-index: 0
机构:
RIKEN Brain Sci Inst, Wako, Saitama 3510198, JapanKyoto Univ, Grad Sch Med, Dept Neurosci, Kyoto 6068501, Japan
Fujii, Naotaka
[3
]
Dehaene, Stanislas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Univ Paris Sud, INSERM, Cognit Neuroimaging Unit,CEA,DSV,I2BM,NeuroSpin C, F-91191 Gif Sur Yvette, France
Coll France, F-75005 Paris, FranceKyoto Univ, Grad Sch Med, Dept Neurosci, Kyoto 6068501, Japan
Dehaene, Stanislas
[5
,6
]
机构:
[1] Kyoto Univ, Grad Sch Med, Dept Neurosci, Kyoto 6068501, Japan
[2] Kyoto Univ, Fac Med, Kyoto 6068501, Japan
[3] RIKEN Brain Sci Inst, Wako, Saitama 3510198, Japan
[4] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, Shanghai 200031, Peoples R China
[5] Univ Paris Saclay, Univ Paris Sud, INSERM, Cognit Neuroimaging Unit,CEA,DSV,I2BM,NeuroSpin C, F-91191 Gif Sur Yvette, France
According to predictive-coding theory, cortical areas continuously generate and update predictions of sensory inputs at different hierarchical levels and emit prediction errors when the predicted and actual inputs differ. However, predictions and prediction errors are simultaneous and interdependent processes, making it difficult to disentangle their constituent neural network organization. Here, we test the theory by using high-density electrocortico-graphy (ECoG) in monkeys during an auditory "localglobal'' paradigm in which the temporal regularities of the stimuli were controlled at two hierarchical levels. We decomposed the broadband data and identified lower-and higher-level prediction-error signals in early auditory cortex and anterior temporal cortex, respectively, and a prediction-update signal sent from prefrontal cortex back to temporal cortex. The prediction-error and prediction-update signals were transmitted via gamma (>40 Hz) and alpha/beta (<30 Hz) oscillations, respectively. Our findings provide strong support for hierarchical predictive coding and outline how it is dynamically implemented using distinct cortical areas and frequencies.