p-energy and p-harmonic functions on Sierpinski gasket type fractals

被引:32
作者
Herman, PE
Peirone, R
Strichartz, RS
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
D O I
10.1023/A:1026377524793
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that it is possible to define a notion of p-energy for functions defined on a class of fractals including the Sierpinski gasket (SG) for any value of p, 1 < p < infinity, extending the construction of Kigami for p = 2, as a renormalized limit of modified p-energies on a sequence of graphs. Our proof is non-constructive, and does not settle the question of uniqueness. Based on the p-energy we may define p-harmonic functions as p-energy minimizers subject to boundary conditions, but again uniqueness is only conjectural. We present some numerical data as a complement to our results. This work is intended to pave the way for an eventual theory of p-Laplacians on fractals.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 10 条
[1]   Brownian motion on fractals and function spaces [J].
Jonsson, A .
MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (03) :495-504
[2]   Constructing a Laplacian on the diamond fractal [J].
Kigami, J ;
Strichartz, RS ;
Walker, KC .
EXPERIMENTAL MATHEMATICS, 2001, 10 (03) :437-448
[3]  
Kigami J., 2001, ANAL FRACTALS
[4]  
LINDSTROM T, 1989, MEM AM MATH SOC, V420
[5]   HILBERTS PROJECTIVE METRIC ON CONES OF DIRICHLET FORMS [J].
METZ, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 127 (02) :438-455
[6]  
Metz V, 1996, J REINE ANGEW MATH, V480, P161
[7]  
Peirone R, 2000, BOLL UNIONE MAT ITAL, V3B, P431
[8]   Existence and uniqueness of diffusions on finitely ramified self-similar fractals [J].
Sabot, C .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1997, 30 (05) :605-673
[9]  
STRICHARTZ R, UNPUB P LAPLACIAN SI
[10]  
STRICHARTZ RS, IN PRESS J FUNCT ANA