A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS

被引:64
作者
Da Veiga, L. Beirao [1 ]
Hughes, T. J. R. [2 ]
Kiendl, J. [3 ]
Lovadina, C. [4 ]
Niiranen, J. [5 ]
Reali, A. [3 ]
Speleers, H. [6 ]
机构
[1] Univ Milan, Dept Math, I-20133 Milan, Italy
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Univ Pavia, Dept Civil Engn & Architecture, I-27100 Pavia, Italy
[4] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[5] Aalto Univ, Dept Civil & Struct Engn, Aalto 00076, Finland
[6] Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
基金
欧洲研究理事会; 美国国家科学基金会; 芬兰科学院;
关键词
Isogeometric Analysis; plate models; convergence analysis; FINITE-ELEMENT-METHOD; B-SPLINES; FAMILY;
D O I
10.1142/S0218202515500402
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a reformulated version of Reissner-Mindlin plate theory in which rotation variables are eliminated in favor of transverse shear strains. Upon discretization, this theory has the advantage that the "shear locking" phenomenon is completely precluded, independent of the basis functions used for displacement and shear strains. Any combination works, but due to the appearance of second derivatives in the strain energy expression, smooth basis functions are required. These are provided by Isogeometric Analysis, in particular, NURBS of various degrees and quadratic triangular NURPS. We present a mathematical analysis of the formulation proving convergence and error estimates for all physically interesting quantities, and provide numerical results that corroborate the theory.
引用
收藏
页码:1519 / 1551
页数:33
相关论文
共 33 条
[1]  
[Anonymous], 1965, Lectures on Elliptic Boundary Value Problems
[2]  
[Anonymous], 2006, MATH MOD METH APPL S
[3]  
[Anonymous], 2009, Isogeometric Analysis: Toward Integration of CAD and FEA, DOI DOI 10.1016/j.advengsoft.2011.06.010
[4]  
[Anonymous], ADV FINITE ELEMENT M
[5]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[6]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[7]  
Bathe K.-J., 2006, Finite Element Procedure
[8]   Isogeometric shell analysis: The Reissner-Mindlin shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M. C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :276-289
[9]  
Brezzi F., 1991, Mathematical Models & Methods in Applied Sciences, V1, P125, DOI 10.1142/S0218202591000083
[10]   An optimal low-order locking-free finite element method for Reissner-Mindlin plates [J].
Chapelle, D ;
Stenberg, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (03) :407-430