Generalized symmetric *-rings and Jacobson's Lemma for Moore-Penrose inverse

被引:5
作者
Zhang, Xiaoxiang [1 ]
Chen, Jianlong [1 ]
Wang, Long [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2017年 / 91卷 / 3-4期
基金
中国国家自然科学基金;
关键词
symmetric *-ring; generalized symmetric *-ring; Jacobson's Lemma; Moore Penrose inverse;
D O I
10.5486/PMD.2017.7597
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known as Jacobson's Lemma that 1 - ba is invertible in a ring if so is 1 ab. Moreover, if c = (1 - ab)(-1), then (1 - ba)(-1) = 1 + bca. However, the analogous statement for Moore-Penrose inverse in a *-ring is not true in general. Note that Jacobson's Lemma for Moore Penrose inverse holds true in a symmetric *-ring. In this paper, we study symmetric *-rings and introduce the notion of a generalized symmetric *-ring. A *-ring R is called generalized symmetric if 1 (u* - u)(2) is invertible for all units u in R. When 1 ab is Moore Penrose invertible in such a ring, we provide sufficient and necessary conditions under which 1 ba has a Moore Penrose inverse (1 - ba)(dagger) and give a formula for (1 - ba)(dagger).
引用
收藏
页码:321 / 329
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1972, Grundlehren der mathematischen Wissenschaften
[2]   GENERALIZED INVERSES OF A SUM IN RINGS [J].
Castro-Gonzalez, N. ;
Mendes-Araujo, C. ;
Patricio, Pedro .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (01) :156-164
[3]   On Jacobson's lemma and Drazin invertibility [J].
Cvetkovic-Ilic, Dragana ;
Harte, Robin .
APPLIED MATHEMATICS LETTERS, 2010, 23 (04) :417-420
[4]  
Everest G., 2005, GRADUATE TEXTS MATH, V232
[5]   WHEN DOES THE MOORE-PENROSE INVERSE FLIP? [J].
Hartwig, R. E. ;
Patricio, P. .
OPERATORS AND MATRICES, 2012, 6 (01) :181-192
[6]  
HARTWIG RE, 1980, P AM MATH SOC, V78, P181
[7]   Moore-Penrose inverse in rings with involution [J].
Koliha, J. J. ;
Djordjevic, Dragan ;
Cvetkovic, Dragana .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :371-381
[8]   Range projections and the Moore-Penrose inverse in rings with involution [J].
Koliha, J. J. ;
Rakocevic, V. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (02) :103-112
[9]   Elements of rings with equal spectral idempotents [J].
Koliha, JJ ;
Patricio, P .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 :137-152
[10]  
Milies C. P., 2002, An Introduction to Group Rings