ON THE SUM-CONNECTIVITY INDEX

被引:40
作者
Wang, Shilin [1 ]
Zhou, Bo [1 ]
Trinajstic, Nenad [2 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[2] Rudjer Boskovic Inst, HR-10002 Zagreb, Croatia
基金
中国国家自然科学基金;
关键词
Sum-connectivity index; product-connectivity index; Randie connectivity index; triangle-free graph; minimum degree; RANDIC INDEX; TRENDS;
D O I
10.2298/FIL1103029W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The sum-connectivity index of a simple graph G is defined in mathematical chemistry as R+ (G) = Sigma(uv is an element of E(G)) (d(u) + d(v))(-1/2), where E(G) is the edge set of G and d(u) is the degree of vertex u in G. We give a best possible lower bound for the sum-connectivity index of a graph (a triangle-free graph, respectively) with n vertices and minimum degree at least two and characterize the extremal graphs, where n >= 11.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 2008, Handbook of molecular descriptors
[2]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[3]   On the Randic index [J].
Delorme, C ;
Favaron, O ;
Rautenbach, D .
DISCRETE MATHEMATICS, 2002, 257 (01) :29-38
[4]  
Devillers J, 2000, TOPOLOGICAL INDICES
[5]  
Diudea M.V, 2001, Molecular Topology
[6]  
DU Z., B MALAYS MA IN PRESS
[7]   Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number [J].
Du, Zhibin ;
Zhou, Bo ;
Trinajstic, Nenad .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (02) :842-855
[8]   Some new trends in chemical graph theory [J].
Garcia-Domenech, Ramn ;
Galvez, Jorge ;
de Julian-Ortiz, Jesus V. ;
Pogliani, Lionello .
CHEMICAL REVIEWS, 2008, 108 (03) :1127-1169
[9]  
Gutman I., 2008, Recent Results in the Theory of Randi Index
[10]  
Kier L. B., 1986, Research studies