Regularity and convergence of crystalline motion

被引:20
作者
Ishii, K [1 ]
Soner, HM
机构
[1] Kobe Univ Mercantile Marine, Dept Math, Kobe, Hyogo 658, Japan
[2] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
关键词
crystalline motion; motion by mean curvature; viscosity solutions;
D O I
10.1137/S0036141097317347
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the motion of polygons by crystalline curvature. We show that "smooth" polygon evolves by crystalline curvature "smoothly" and that it shrinks to a point in finite time. We also establish the convergence of crystalline motion to the motion by mean curvature.
引用
收藏
页码:19 / 37
页数:19
相关论文
共 34 条
[1]   CURVATURE-DRIVEN FLOWS - A VARIATIONAL APPROACH [J].
ALMGREN, F ;
TAYLOR, JE ;
WANG, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :387-437
[2]  
ALMGREN F, 1995, J DIFFER GEOM, V42, P1
[3]  
Ambrosio L, 1996, J DIFFER GEOM, V43, P693
[4]   MULTIPHASE THERMOMECHANICS WITH INTERFACIAL STRUCTURE .2. EVOLUTION OF AN ISOTHERMAL INTERFACE [J].
ANGENENT, S ;
GURTIN, ME .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (04) :323-391
[5]  
[Anonymous], 1993, P S PURE MATH
[6]   FRONT PROPAGATION AND PHASE FIELD-THEORY [J].
BARLES, G ;
SONER, HM ;
SOUGANIDIS, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :439-469
[7]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[8]  
BARLES G, 1987, ESAIM-MATH MODEL NUM, V21, P557
[9]  
Brakke KA., 1978, The motion of a surface by its mean curvature
[10]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749