Properties of flotation residual carbon from gasification fine slag

被引:87
|
作者
Guo, Fanhui [1 ,2 ]
Miao, Zekai [1 ,2 ]
Guo, Zhenkun [1 ,2 ]
Li, Jian [1 ]
Zhang, Yixin [2 ]
Wu, Jianjun [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Chinese Natl Engn Res Ctr Coal Preparat & Purific, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Gasification fine slag; Froth flotation; Residual carbon; Waste recycling; Fuel properties; LOI determine; COAL FLY-ASH; UNBURNED CARBON; BOTTOM ASH; CHAR; CONSTITUENTS; REACTIVITY;
D O I
10.1016/j.fuel.2020.117043
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The purpose of this study was to upgrade the fine slag by a froth flotation kinetics process in order to separate and recycle the residual carbon and tailing ash simultaneously. Fine slag, a kind of solid waste, was obtained from an entrained-flow gasification unit. The carbon content of flotation residual carbon was 64.47% by weight, which is about 3 times of that of gasification fine slag. The results show that when the particle size of fractions is higher ( > 75 mu m), the carbon content is higher, even > 80%. The fine slag and flotation residual carbon were characterized by elemental and proximate analysis in order to compare the H/C, O/C, and element characteristics. The morphology of fine slag was determined by scanning electron microscopy (SEM). It was found the grinding time of 6 min can meet the crushing requirements of large particle flotation residual carbon. The grinding volume ratio of > 80% is < 75 mu m sieving, which is a benefit for further fuel utilization. The non-isothermal thermo-gravimetric analysis (TGA) and loss on ignition (LOI) at 450 degrees C & 550 degrees C methods were used to analyze and compare the oxidation of residual carbon. In conclusion, LOI at 550 degrees C and non-isothermal TGA approaches can be used to determine the carbon content, which provides a reference for the determining LOI of waste-derived fuels in industries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The microwave absorption properties of residual carbon from coal gasification fine slag
    Gao, Shengtao
    Zhang, Yuanchun
    Li, Hanxu
    He, Jun
    Xu, Hang
    Wu, Chengli
    FUEL, 2021, 290
  • [2] Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon
    Guo, Fanhui
    Zhao, Xu
    Guo, Yang
    Zhang, Yixin
    Wu, Jianjun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 585
  • [3] Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review
    Han, Rui
    Zhou, Anning
    Zhang, Ningning
    Guo, Kaiqiang
    Cheng, Mengyan
    Chen, Heng
    Li, Cuicui
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (02) : 217 - 230
  • [4] Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review
    Rui Han
    Anning Zhou
    Ningning Zhang
    Kaiqiang Guo
    Mengyan Cheng
    Heng Chen
    Cuicui Li
    International Journal of Minerals, Metallurgy and Materials, 2024, 31 : 217 - 230
  • [5] Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review
    Rui Han
    Anning Zhou
    Ningning Zhang
    Kaiqiang Guo
    Mengyan Cheng
    Heng Chen
    Cuicui Li
    International Journal of Minerals,Metallurgy and Materials, 2024, (02) : 217 - 230
  • [6] Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation
    Wang, Weidong
    Liu, Dinghua
    Tu, Yanan
    Jin, Lizhang
    Wang, Huan
    FUEL, 2020, 278 (278)
  • [7] Recovery of residual carbon from coal gasification fine slag by a combined gravity separation-flotation process
    Lv, Bo
    Chai, Xiaoman
    Deng, Xiaowei
    Jiao, Feishuo
    Fang, Chaojun
    Xing, Baolin
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 348
  • [8] Intensification of flotation separation process of residual carbon from coal gasification fine slag using ultrafine carbon particles conditioning
    Liang, Yannan
    Wang, Hainan
    Chen, Ruifeng
    Li, Danlong
    Tian, Quanzhi
    Li, Lei
    Zhang, Haijun
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2024, 44 (12) : 2044 - 2059
  • [9] Innovative flotation separation considering pores blocking to facilitate residual carbon recovery from coal gasification fine slag
    Zhang, Ningning
    Cheng, Mengyan
    Han, Rui
    Li, Zhen
    Chen, Songjiang
    Zhu, Zhanglei
    Yu, Yuexian
    Zhou, Anning
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 310
  • [10] Enrichment of residual carbon from coal gasification fine slag by spiral separator
    Yu, Wei
    Zhang, Hanlin
    Wang, Xuebin
    Rahman, Zia Ur
    Shi, Zhaochen
    Bai, Yonghui
    Wang, Guishan
    Chen, Yongqiang
    Wang, Jianjun
    Liu, Lijun
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 315