Green's Function Solutions of One- and Two-Dimensional Dual-Phase-Lag Laser Heating Problems in Nano/Microstructures

被引:4
|
作者
Troy, William [1 ]
Dutta, Mitra [1 ,2 ]
Stroscio, Michael [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Phys Dept, Chicago, IL 60607 USA
[3] Univ Illinois, Richard & Loan Hill Dept Biomed Engn, Chicago, IL 60607 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2021年 / 143卷 / 11期
关键词
MULTILAYER METALS; CONDUCTION; LEQUATION;
D O I
10.1115/1.4051882
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lasers and laser heating have a wide variety of applications such as spectroscopy, laser welding, laser cutting, and even biological applications like tumor irradiation and surgery. Theoretical modeling of laser heating has proven to be quite difficult, and classical heating equations have shown to be inaccurate due to the large temperature gradients created by the laser heating. Furthermore, the commonly used Fourier's Law assumed the speed for a thermal wave to propagate as infinite; this is unrealistic in any medium and especially in domains with slow propagation speeds such as biological media and in fast nano/microscale heating applications. This study helps fill some of the gaps in accurate model of laser heating by presenting unique 1D and 2D models of the analytically solved Dual-Phase-Lag heating equations which can much more accurately describe the temperature of such interactions in both the temporal and spatial domains.
引用
收藏
页数:9
相关论文
共 5 条