High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate

被引:18
作者
Celik, Oguz Tolga [1 ]
Sarabalis, Christopher J. [2 ]
Mayor, Felix M. [1 ]
Stokowski, Hubert S. [1 ]
Herrmann, Jason F. [1 ]
McKenna, Timothy P. [1 ,3 ]
Lee, Nathan R. A. [1 ]
Jiang, Wentao [1 ]
Multani, Kevin K. S. [1 ]
Safavi-Naeini, Amir H. [1 ]
机构
[1] Stanford Univ, Ginzton Lab, 348 Via Pueblo Mall, Stanford, CA 94305 USA
[2] Flux Photon Inc, 580 Crespi Dr, Pacifica, CA 94044 USA
[3] NTT Res Inc, 940 Stewart Dr, Sunnyvale, CA 94085 USA
基金
美国国家科学基金会;
关键词
INTEGRATED PHOTONICS PLATFORM; WAVE-GUIDE; ULTRAVIOLET;
D O I
10.1364/OE.460119
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm(2). Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 x 105. This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:23177 / 23186
页数:10
相关论文
共 54 条
[1]   Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits [J].
Boes, Andreas ;
Corcoran, Bill ;
Chang, Lin ;
Bowers, John ;
Mitchell, Arnan .
LASER & PHOTONICS REVIEWS, 2018, 12 (04)
[2]   Materials challenges for trapped-ion quantum computers [J].
Brown, Kenneth R. ;
Chiaverini, John ;
Sage, Jeremy M. ;
Haffner, Hartmut .
NATURE REVIEWS MATERIALS, 2021, 6 (10) :892-905
[3]   Trapped-ion quantum computing: Progress and challenges [J].
Bruzewicz, Colin D. ;
Chiaverini, John ;
McConnell, Robert ;
Sage, Jeremy M. .
APPLIED PHYSICS REVIEWS, 2019, 6 (02)
[4]   High Q-factor sapphire whispering gallery mode microwave resonator at single photon energies and millikelvin temperatures [J].
Creedon, Daniel L. ;
Reshitnyk, Yarema ;
Farr, Warrick ;
Martinis, John M. ;
Duty, Timothy L. ;
Tobar, Michael E. .
APPLIED PHYSICS LETTERS, 2011, 98 (22)
[5]   Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states [J].
de Leseleuc, Sylvain ;
Barredo, Daniel ;
Lienhard, Vincent ;
Browaeys, Antoine ;
Lahaye, Thierry .
PHYSICAL REVIEW A, 2018, 97 (05)
[6]   Ultra-low-loss integrated visible photonics using thin-film lithium niobate [J].
Desiatov, Boris ;
Shams-Ansari, Amirhassan ;
Zhang, Mian ;
Wang, Cheng ;
Loncar, Marko .
OPTICA, 2019, 6 (03) :380-384
[7]   High-speed programmable photonic circuits in a cryogenically compatible, visible-near-infrared 200 mm CMOS architecture [J].
Dong, Mark ;
Clark, Genevieve ;
Leenheer, Andrew J. ;
Zimmermann, Matthew ;
Dominguez, Daniel ;
Menssen, Adrian J. ;
Heim, David ;
Gilbert, Gerald ;
Englund, Dirk ;
Eichenfield, Matt .
NATURE PHOTONICS, 2022, 16 (01) :59-+
[8]   Micro-optical realization of arrays of selectively addressable dipole traps:: A scalable configuration for quantum computation with atomic qubits -: art. no. 097903 [J].
Dumke, R ;
Volk, M ;
Müther, T ;
Buchkremer, FBJ ;
Birkl, G ;
Ertmer, W .
PHYSICAL REVIEW LETTERS, 2002, 89 (09) :979031-979034
[9]   Atom-by-atom assembly of defect-free one-dimensional cold atom arrays [J].
Endres, Manuel ;
Bernien, Hannes ;
Keesling, Alexander ;
Levine, Harry ;
Anschuetz, Eric R. ;
Krajenbrink, Alexandre ;
Senko, Crystal ;
Vuletic, Vladan ;
Greiner, Markus ;
Lukin, Mikhail D. .
SCIENCE, 2016, 354 (6315) :1024-1027
[10]   Photonic crystal cavities in silicon dioxide [J].
Gong, Yiyang ;
Vuckovic, Jelena .
APPLIED PHYSICS LETTERS, 2010, 96 (03)