The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy

被引:80
|
作者
Murthy, Anastasia C. [1 ]
Fawzi, Nicolas L. [2 ,3 ]
机构
[1] Brown Univ, Grad Program Mol Biol Cell Biol & Biochem, Providence, RI 02912 USA
[2] Brown Univ, Dept Mol Pharmacol Physiol & Biotechnol, Providence, RI 02912 USA
[3] Brown Univ, Robert J & Nancy D Carney Inst Brain Sci, Providence, RI 02912 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
intrinsically disordered protein; structural biology; heterogeneous nuclear ribonucleoprotein (hnRNP); nuclear magnetic resonance (NMR); protein-protein interaction; liquid-liquid phase separation; RNA-binding proteins; C-TERMINAL DOMAIN; RNA-POLYMERASE-II; DISORDERED PROTEINS; SECONDARY STRUCTURE; ATOMIC-RESOLUTION; FUS; BINDING; RELAXATION; GRANULES; STATES;
D O I
10.1074/jbc.REV119.009847
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a phenomenon that underlies membraneless compartmentalization of the cell. The underlying molecular interactions that underpin biomolecular LLPS have been of increased interest due to the importance of membraneless organelles in facilitating various biological processes and the disease association of several of the proteins that mediate LLPS. Proteins that are able to undergo LLPS often contain intrinsically disordered regions and remain dynamic in solution. Solution-state NMR spectroscopy has emerged as a leading structural technique to characterize protein LLPS due to the variety and specificity of information that can be obtained about intrinsically disordered sequences. This review discusses practical aspects of studying LLPS by NMR, summarizes recent work on the molecular aspects of LLPS of various protein systems, and discusses future opportunities for characterizing the molecular details of LLPS to modulate phase separation.
引用
收藏
页码:2375 / 2384
页数:10
相关论文
共 50 条
  • [41] Applications of Liquid-Liquid Phase Separation in Biosensing
    Huang, Huizhen
    Hu, Jun
    CHEMBIOCHEM, 2025,
  • [42] Liquid-liquid Phase Separation in Viral Function
    Zhang, Xiaoyue
    Zheng, Run
    Li, Zhengshuo
    Ma, Jian
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (16)
  • [43] Spontaneous liquid-liquid phase separation of water
    Yagasaki, Takuma
    Matsumoto, Masakazu
    Tanaka, Hideki
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [44] Liquid-liquid phase separation in innate immunity
    Liu, Dawei
    Yang, Jinhang
    Cristea, Ileana M.
    TRENDS IN IMMUNOLOGY, 2024, 45 (06) : 454 - 469
  • [45] Liquid-liquid phase separation in organic aerosol
    Freedman, Miriam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [46] Modulating α-Synuclein Liquid-Liquid Phase Separation
    Sawner, Ajay Singh
    Ray, Soumik
    Yadav, Preeti
    Mukherjee, Semanti
    Panigrahi, Rajlaxmi
    Poudyal, Manisha
    Patel, Komal
    Ghosh, Dhiman
    Kummerant, Eric
    Kumar, Ashutosh
    Riek, Roland
    Maji, Samir K.
    BIOCHEMISTRY, 2021, 60 (48) : 3676 - 3696
  • [47] Driving force of biomolecular liquid–liquid phase separation probed by nuclear magnetic resonance spectroscopy
    Hanyu Zhang
    Weiwei Fan
    Gilbert Nshogoza
    Yaqian Liu
    Jia Gao
    Jihui Wu
    Yunyu Shi
    Xiaoming Tu
    Jiahai Zhang
    Ke Ruan
    BiophysicsReports, 2022, 8 (02) : 90 - 99
  • [48] Liquid-liquid phase separation in supercooled water
    Stanley, HE
    Poole, PH
    Sciortino, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (12BIS): : 2123 - 2133
  • [49] Crystallization in the presence of a liquid-liquid phase separation
    Veesler, Stephane
    Revalor, Eve
    Bottini, Olivier
    Hoff, Christian
    ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2006, 10 (04) : 841 - 845
  • [50] Liquid-Liquid Phase Separation in Crowded Environments
    Andre, Alain A. M.
    Spruijt, Evan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 20