The bifurcation of limit cycles in Zn-equivariant vector fields

被引:9
作者
Du, Chaoxiong [1 ]
Liu, Yirong [2 ]
Chen, Haibo [2 ]
机构
[1] Hunan Shaoyang Univ, Dept Math, Shaoyang 422000, Hunan, Peoples R China
[2] Cent S Univ, Sch Math, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Z(n)-equivariant systems; Focal values; Limit cycle bifurcation; Center;
D O I
10.1016/j.amc.2010.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the bifurcation of limit cycles from fine focus in Zn-equivariant vector fields. An approach for investigating bifurcation was obtained. In order to show our work is efficacious, an example on bifurcations behavior is given, namely five order singular points values are given in the seventh degree Z(8)-equivariant systems. We discuss their bifurcation behavior of limit cycles, and show that there are eight fine focuses of five order and five small amplitude limit cycles can bifurcate from each. So 40 small amplitude limit cycles can bifurcate from eight fine focuses under a certain condition. In terms of the number of limit cycles for seventh degree Z(8)-equivariant systems, our results are good and interesting. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:2041 / 2056
页数:16
相关论文
共 11 条
[1]  
GOBBER F, 1979, J MATH ANAL APPL, V71, P330
[2]  
Li J B., 1991, Publicacions matematiques, V35, P487, DOI [10.5565/PUBLMAT3529113, DOI 10.5565/PUBLMAT3529113]
[3]   Hilbert's 16th problem and bifurcations of planar polynomial vector fields [J].
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :47-106
[4]  
[刘一戎 Liu Yirong], 2002, [应用数学学报, Acta Mathematicae Applicatae Sinica], V25, P295
[5]   A cubic system with twelve small amplitude limit cycles [J].
Liu, YR ;
Huang, WT .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (02) :83-98
[6]  
LIU YR, 1990, SCI CHINA SER A, V33, P10
[7]   Measurement of pinion type cutter using coordinate measuring machine [J].
Liu, ZX ;
Tamura, H ;
Kawasaki, K ;
Mitome, K .
JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2001, 44 (01) :37-43
[8]  
SHI S, 1980, SCI SINICA, V23, P16
[9]   Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields [J].
Yu, P ;
Han, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (01) :329-348
[10]  
YU P, 2005, BIFURCATION LIMIT CY