The use of computational models in the management and prognosis of refractory epilepsy: A critical evaluation

被引:7
作者
Rigney, Grant [1 ]
Lennon, Matthew [2 ,3 ]
Holderrieth, Peter [2 ]
机构
[1] Univ Oxford, Dept Psychiat, Warneford Hosp, Oxford OX3 7JX, England
[2] Univ Oxford, Dept Physiol Anat & Genet, Sherrington Bldg, Oxford, England
[3] Univ New South Wales, Fac Med, Sydney, NSW, Australia
来源
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY | 2021年 / 91卷
关键词
Epilepsy; Refractory epilepsy; Drug-resistant epilepsy; Computational models; Neurosurgery; EVENT-DRIVEN SIMULATION; TEMPORAL-LOBE EPILEPSY; STRUCTURAL CONNECTIVITY; SEIZURE OUTCOMES; NETWORK ANALYSIS; GRAPH-THEORY; SURGERY; CONNECTOME; TRENDS; DEFINITION;
D O I
10.1016/j.seizure.2021.06.006
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose: Drug resistant epilepsy (DRE) affects approximately 30 percent of individuals with epilepsy worldwide. Surgery remains the most effective treatment for individuals with DRE, but referral to surgery is low and only about 60 percent of individuals who undergo surgery experience seizure control postoperatively. The present paper evaluates the evidence for using computational models in the prediction of surgical resection sites and surgical outcomes for patients with DRE. Methods: We conducted a search in the Medline data base using the terms "refractory epilepsy", "drug-resistant epilepsy", "surgery", "computational model", and "artificial intelligence". Inclusion: original articles in English and case reports from 2000 to 2020. Reviews were excluded. Results: Clinical applications of computational models may lead to increased utilisation of surgical services through improving our ability to predict outcomes and by improving surgical outcomes outright. The identification and optimisation of nodes that are crucial for the genesis and propagation of epileptiform activity offers the most promising clinical applications of computational models discussed herein. Conclusion: Advances in computational models may in the future significantly increase the application and efficacy of surgery for patients with DRE by optimising the site and amount of cortex to resect, but more research is needed before it achieves therapeutic utility.
引用
收藏
页码:132 / 140
页数:9
相关论文
共 77 条
[1]   Machine learning applications in epilepsy [J].
Abbasi, Bardia ;
Goldenholz, Daniel M. .
EPILEPSIA, 2019, 60 (10) :2037-2047
[2]   Information bias in health research: definition, pitfalls, and adjustment methods [J].
Althubaiti, Alaa .
JOURNAL OF MULTIDISCIPLINARY HEALTHCARE, 2016, 9 :211-217
[3]   Neural network analysis of preoperative variables and outcome in epilepsy surgery [J].
Arle, JE ;
Perrine, K ;
Devinsky, O ;
Doyle, WK .
JOURNAL OF NEUROSURGERY, 1999, 90 (06) :998-1004
[4]   Machine Learning Approach for the Outcome Prediction of Temporal Lobe Epilepsy Surgery [J].
Armananzas, Ruben ;
Alonso-Nanclares, Lidia ;
DeFelipe-Oroquieta, Jesus ;
Kastanauskaite, Asta ;
de Sola, Rafael G. ;
DeFelipe, Javier ;
Bielza, Concha ;
Larranaga, Pedro .
PLOS ONE, 2013, 8 (04)
[5]   The importance of modeling epileptic seizure dynamics as spatio-temporal patterns [J].
Baier, Gerold ;
Goodfellow, Marc ;
Taylor, Peter N. ;
Wang, Yujiang ;
Garry, Daniel J. .
FRONTIERS IN PHYSIOLOGY, 2012, 3
[6]   European trends in epilepsy surgery [J].
Baud, Maxime O. ;
Perneger, Thomas ;
Racz, Attila ;
Pensel, Max C. ;
Elger, Christian ;
Rydenhag, Bertil ;
Malmgren, Kristina ;
Cross, J. Helen ;
McKenna, Grainne ;
Tisdall, Martin ;
Lamberink, Herm J. ;
Rheims, Sylvain ;
Ryvlin, Philippe ;
Isnard, Jean ;
Mauguiere, Francois ;
Arzimanoglou, Alexis ;
Akkol, Serdar ;
Deniz, Kaancan ;
Ozkara, Cigdem ;
Lossius, Morten ;
Rektor, Ivan ;
Kalviainen, Reetta ;
Vanhatalo, Lotta-Maria ;
Dimova, Petia ;
Minkin, Krassimir ;
Staack, Anke Maren ;
Steinhoff, Bernhard J. ;
Kalina, Adam ;
Krsek, Pavel ;
Marusic, Petr ;
Jordan, Zsofia ;
Fabo, Daniel ;
Carrette, Evelien ;
Boon, Paul ;
Rocka, Saulius ;
Mameniskiene, Ruta ;
Vulliemoz, Serge ;
Pittau, Francesca ;
Braun, Kees P. J. ;
Seeck, Margitta .
NEUROLOGY, 2018, 91 (02) :E96-E106
[7]  
Baumgartner Christoph, 2019, F1000Res, V8, DOI 10.12688/f1000research.17714.1
[8]  
Beggs JM, 2003, J NEUROSCI, V23, P11167
[9]   Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy [J].
Bernhardt, Boris C. ;
Bonilha, Leonardo ;
Gross, Donald W. .
EPILEPSY & BEHAVIOR, 2015, 50 :162-170
[10]   Graph-Theoretical Analysis Reveals Disrupted Small-World Organization of Cortical Thickness Correlation Networks in Temporal Lobe Epilepsy [J].
Bernhardt, Boris C. ;
Chen, Zhang ;
He, Yong ;
Evans, Alan C. ;
Bernasconi, Neda .
CEREBRAL CORTEX, 2011, 21 (09) :2147-2157