STATISTICAL EXPONENTIAL FORMULAS FOR HOMOGENEOUS DIFFUSION

被引:5
作者
Rudd, Matthew B. [1 ]
机构
[1] Sewanee Univ South, Dept Math, Sewanee, TN 37383 USA
关键词
Nonlinear diffusion; nonlinear semigroups; exponential formulas; homogeneous p-Laplacian; parabolic p-Laplacian; MINIMIZING LIPSCHITZ EXTENSIONS; MEAN-CURVATURE MOTION; TUG-OF-WAR; VISCOSITY SOLUTIONS; LEVEL SETS; INFINITY-LAPLACIAN; COMPARISON PRINCIPLE; PARABOLIC EQUATIONS; DIFFERENCE SCHEME; P-LAPLACIAN;
D O I
10.3934/cpaa.2015.14.269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Delta(1)(p) denote the 1-homogeneous p-Laplacian, for 1 <= p <= infinity. This paper proves that the unique bounded, continuous viscosity solution u of the Cauchy problem {u(t) - (p/N+p-2) Delta(1)(p)u = 0 for x is an element of R-N and t > 0, u(+, 0) = u(0) is an element of BUC(R-N) is given by the exponential formula u(t) := lim(n ->infinity) (M-p(t/n))(n) u(0), where the statistical operator M-p(h): BUC(R-N) -> BUC(R-N) is defined by (M-p(h)phi) (x) := (1 - q) median(partial derivative B (x,root 2h)) {phi} + q integral(partial derivative B(x,root 2h)) phi ds when 1 <= p <= 2, with q := N(p-1)/N+P-2, and by (M-p(h)phi) (x) := (1 - q) midrange(partial derivative B (x,root 2h)) {phi} + q integral(partial derivative B(x,root 2h)) phi ds when p >= 2, with q - N/N+P-2. Possible extensions to problems with Dirichlet boundary conditions are mentioned briefly.
引用
收藏
页码:269 / 284
页数:16
相关论文
共 50 条
[41]   AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS RELATED TO TUG-OF-WAR GAMES [J].
Manfredi, Juan J. ;
Parviainen, Mikko ;
Rossi, Julio D. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (05) :2058-2081
[42]   MOTION OF MULTIPLE JUNCTIONS - A LEVEL SET APPROACH [J].
MERRIMAN, B ;
BENCE, JK ;
OSHER, SJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (02) :334-363
[43]  
Oberman AM, 2005, MATH COMPUT, V74, P1217, DOI 10.1090/S0025-5718-04-01688-6
[44]   A convergent monotone difference scheme for motion of level sets by mean curvature [J].
Oberman, AM .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :365-379
[45]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[46]  
Pazy A., 1993, SEMIGROUPS LINEAR OP, DOI DOI 10.1007/978-1-4612-5561-1
[47]   Tug-of-war with noise:: A game-theoretic view of the p-Laplacian [J].
Peres, Yuval ;
Sheffield, Scott .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (01) :91-120
[48]  
Ruuth SJ, 2000, SIAM J APPL MATH, V60, P868
[49]   GENERALIZED MOTION BY CURVATURE WITH A DIRICHLET CONDITION [J].
STERNBERG, P ;
ZIEMER, WP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 114 (02) :580-600
[50]  
Varopoulos N Th, 1992, Cambridge Tracts in Mathematics, V100