STATISTICAL EXPONENTIAL FORMULAS FOR HOMOGENEOUS DIFFUSION

被引:5
作者
Rudd, Matthew B. [1 ]
机构
[1] Sewanee Univ South, Dept Math, Sewanee, TN 37383 USA
关键词
Nonlinear diffusion; nonlinear semigroups; exponential formulas; homogeneous p-Laplacian; parabolic p-Laplacian; MINIMIZING LIPSCHITZ EXTENSIONS; MEAN-CURVATURE MOTION; TUG-OF-WAR; VISCOSITY SOLUTIONS; LEVEL SETS; INFINITY-LAPLACIAN; COMPARISON PRINCIPLE; PARABOLIC EQUATIONS; DIFFERENCE SCHEME; P-LAPLACIAN;
D O I
10.3934/cpaa.2015.14.269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Delta(1)(p) denote the 1-homogeneous p-Laplacian, for 1 <= p <= infinity. This paper proves that the unique bounded, continuous viscosity solution u of the Cauchy problem {u(t) - (p/N+p-2) Delta(1)(p)u = 0 for x is an element of R-N and t > 0, u(+, 0) = u(0) is an element of BUC(R-N) is given by the exponential formula u(t) := lim(n ->infinity) (M-p(t/n))(n) u(0), where the statistical operator M-p(h): BUC(R-N) -> BUC(R-N) is defined by (M-p(h)phi) (x) := (1 - q) median(partial derivative B (x,root 2h)) {phi} + q integral(partial derivative B(x,root 2h)) phi ds when 1 <= p <= 2, with q := N(p-1)/N+P-2, and by (M-p(h)phi) (x) := (1 - q) midrange(partial derivative B (x,root 2h)) {phi} + q integral(partial derivative B(x,root 2h)) phi ds when p >= 2, with q - N/N+P-2. Possible extensions to problems with Dirichlet boundary conditions are mentioned briefly.
引用
收藏
页码:269 / 284
页数:16
相关论文
共 50 条
[1]   Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian [J].
Akagi, Goro ;
Suzuki, Kazumasa .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 31 (04) :457-471
[2]   Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian [J].
Akagi, Goro ;
Juutinen, Petri ;
Kajikiya, Ryuji .
MATHEMATISCHE ANNALEN, 2009, 343 (04) :921-953
[3]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[4]  
[Anonymous], 1989, GRAD TEXTS MATH
[5]  
[Anonymous], 2009, AMSIP STUDIES ADV MA
[6]  
[Anonymous], 1993, OXFORD MATH MONOGR
[7]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[8]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[9]  
[Anonymous], 2006, NOTES P LAPLACE EQUA
[10]  
[Anonymous], 1992, Bull. Amer. Math. Soc.